NVIDIA Triton 系列文章(8):用户端其他特性
ztj100 2024-11-11 15:14 19 浏览 0 评论
前面文章用 Triton 开源项目提供的 image_client.py 用户端作示范,在这个范例代码里调用大部分 Triton 用户端函数,并使用多种参数来配置执行的功能,本文内容就是简单剖析 image_client.py 的代码,为读者提供撰写 Triton 用户端的流程。
- 指定通信协议
为了满足大部分网路环境的用户端请求,Triton 在服务器与用户端之间提供 HTTP 与 gRPC 两种通信协议,如下架构图所示:
当我们启动 Triton 服务器之后,最后状态会停留在如下截屏的地方:
显示的信息表示,系统提供 8001 端口给 gRPC 协议使用、提供 8000 端口给 HTTP 协议使用。此时服务器处于接收用户端请求的状态,因此“指定通信协议”是执行 Triton 用户端的第一个工作。
这个范例支持两种通信协议,一开始先导入 tritonclient.http 与 tritonclient.grpc 两个模块,如下:
import tritonclient.grpc as grpcclient
import tritonclient.http as httpclient
代码使用“-i”或“--protocal”其中一种参数指定“HTTP”或“gRPC”协议类型,如果不指定就使用“HTTP”预设值。再根据协议种类调用 httpcclient.InferenceServerClient() 或 grpcclient.InferenceServerClient() 函数创建 triton_client 对象,如下所示:
try:
if FLAGS.protocol.lower() == "grpc":
# Create gRPC client for communicating with the server
triton_client = grpcclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose)
else:
# Specify large enough concurrency to handle the
# the number of requests.
concurrency = 20 if FLAGS.async_set else 1
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose, concurrency=concurrency)
最后启用 triton_client.infer() 函数对 Triton 服务器发出推理要求,当然得将所需要的参数提供给这个函数,如下所示:
responses.append(
triton_client.infer(FLAGS.model_name,
inputs,
request_id=str(sent_count),
model_version=FLAGS.model_version,
outputs=outputs))
不过 image_client.py 代码中并未设定 gRPC 所需要的 8001 端口,因此使用这个通讯协议时,需要用“-u”参数设定“IP:端口”,例如下面指令:
$ python3 image_client.py -m inception_graphdef -s INCEPTION VGG ${HOME}/images/mug.jpg -i GRPC -u <服务器IP>:8001
在 examples 范例目录下还有 20 个基于 gRPC 协议的范例以及 10 个基于 HTTP 协议的范例,则是在代码内直接指定个别通信协议与端口号的范例,读者可以根据需求去修改特定的范例代码。
- 调用异步模式(async mode)与数据流(streaming)
大部分读者比较熟悉的并行计算模式,就是在同一个时钟脉冲(clock puls)让不同计算核执行相同的工作,也就是所谓的 SIMD(单指令多数据)并行计算,通常适用于数据量大而且持续的密集型计算任务。
对 Triton 推理服务器而言,并不能确认所收到的推理要求是否为密集型的计算。事实上很大比例的推理要求是属于零碎型计算,这种状况下调用“异步模式”会让系统更加有效率,因为它允许不同计算核(线程)在同一个时钟脉冲段里执行不同指令,这样能大大提高执行弹性进而优化计算性能。
当 Triton 服务器端启动之后,就能接收来自用户端的“异步模式”请求,不过在 HTTP 协议与 gRPC 协议的处理方式不太一样。
在代码中用 httpclient.InferenceServerClient() 函数创建 HTTP 的 triton_client 对象时,需要给定“concurrnecy(并发数量)”参数,而创建 gRPC 的用户端时就不需要这个参数。
调用异步模式有时会需要搭配数据流(stream)的处理器(handle),因此在实际推理的函数就有 triton_client.async_infer() 与 triton_client.async_stream_infer() 两种,使用 gRPC 协议创建的 triton_client,在调用无 stream 模式的 async_infer() 函数进行推理时,需要提供 partial(completion_callback, user_data) 参数。
由于异步处理与数据流处理有比较多底层线程管理的细节,初学者只需要范例目录下的代码,包括 image_client.py 与两个 simple_xxxx_async_infer_client.py 的代码就可以,细节部分还是等未来更熟悉系统之后再进行深入。
- 使用共享内存(share memory)
如果发起推理请求的 Triton 用户端与 Triton 服务器在同一台机器时,就可以使用共享内存的功能,这包含一般系统内存与 CUDA 显存两种,这项功能可以非常高效地降低数据传输的开销,对提升推理性能有明显的效果。
在 image_client.py 范例中并未提供这项功能,在 Python 范例下有 6 个带有“shm”文件名的代码,就是支持共享内存调用的范例,其中 simple_http_shm_client.py 与 simple_grpc_shm_client.py 为不同通信协议提供了使用共享系统内存的代码,下面以 simple_grpc_shm_client.py 内容为例,简单说明一下主要执行步骤:
# 1.为两个输入张量创建数据:第1个初始化为一整数、第2个初始化为所有整数
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input1_data = np.ones(shape=16, dtype=np.int32)
input_byte_size = input0_data.size * input0_data.itemsize
output_byte_size = input_byte_size
# 2. 为输出创建共享内存区域,并存储共享内存管理器
shm_op_handle = shm.create_shared_memory_region("output_data",
"/output_simple",
output_byte_size * 2)
# 3.使用Triton Server注册输出的共享内存区域
triton_client.register_system_shared_memory("output_data", "/output_simple",
output_byte_size * 2)
# 4. 将输入数据值放入共享内存
shm_ip_handle = shm.create_shared_memory_region("input_data",
"/input_simple",
input_byte_size * 2)
# 5. 将输入数据值放入共享内存
shm.set_shared_memory_region(shm_ip_handle, [input0_data])
shm.set_shared_memory_region(shm_ip_handle, [input1_data],
offset=input_byte_size)
# 6. 使用Triton Server注册输入的共享内存区域
triton_client.register_system_shared_memory("input_data", "/input_simple",
input_byte_size * 2)
# 7. 设置参数以使用共享内存中的数据
inputs = []
inputs.append(grpcclient.InferInput('INPUT0', [1, 16], "INT32"))
inputs[-1].set_shared_memory("input_data", input_byte_size)
inputs.append(grpcclient.InferInput('INPUT1', [1, 16], "INT32"))
inputs[-1].set_shared_memory("input_data",
input_byte_size,
offset=input_byte_size)
outputs = []
outputs.append(grpcclient.InferRequestedOutput('OUTPUT0'))
outputs[-1].set_shared_memory("output_data", output_byte_size)
outputs.append(grpcclient.InferRequestedOutput('OUTPUT1'))
outputs[-1].set_shared_memory("output_data",
output_byte_size,
offset=output_byte_size)
results = triton_client.infer(model_name=model_name,
inputs=inputs,
outputs=outputs)
# 8. 从共享内存读取结果
output0 = results.get_output("OUTPUT0")
至于范例中有两个 simple_xxxx_cudashm_client.py 这是针对 CUDA 显存共享的返利代码,主要逻辑与上面的代码相似,主要将上面“shm.”开头的函数改成“cudashm.”开头的函数,当然处理流程也更加复杂一些,需要有足够 CUDA 编程基础才有能力驾驭,因此初学者只要大致了解流程就行。
以上就是 Triton 用户端会用到的基本功能,不过缺乏足够的说明文件,因此其他功能函数的内容必须自行在开源文件内寻找,像 C++ 版本的功能得在 src/c++/library 目录下的 common.h、grpc_client.h 与 http_client.h 里找到细节,Python 版本的函数分别在 src/python/library/triton_client 下的 grpc、http、utils 下的 __init__.py 代码内,获取功能与函数定义的细节。
相关推荐
- 这个 JavaScript Api 已被废弃!请慎用!
-
在开发过程中,我们可能会不自觉地使用一些已经被标记为废弃的JavaScriptAPI。这些...
- JavaScript中10个“过时”的API,你的代码里还在用吗?
-
JavaScript作为一门不断发展的语言,其API也在持续进化。新的、更安全、更高效的API不断涌现,而一些旧的API则因为各种原因(如安全问题、性能瓶颈、设计缺陷或有了更好的替代品)被标记为“废...
- 几大开源免费的 JavaScript 富文本编辑器测评
-
MarkDown编辑器用的时间长了,发现发现富文本编辑器用起来是真的舒服。...
- 比较好的网页里面的 html 编辑器 推荐
-
如果您正在寻找嵌入到网页中的HTML编辑器,以便用户可以直接在网页上编辑HTML内容,以下是几个备受推荐的:CKEditor:CKEditor是一个功能强大的、开源的富文本编辑器,可以嵌入到...
- Luckysheet 实现excel多人在线协同编辑
-
前言前些天看到Luckysheet支持协同编辑Excel,正符合我们协同项目的一部分,故而想进一步完善协同文章,但是遇到了一下困难,特此做声明哈,若侵权,请联系我删除文章!若侵犯版权、个人隐私,请联系...
- 从 Element UI 源码的构建流程来看前端 UI 库设计
-
作者:前端森林转发链接:https://mp.weixin.qq.com/s/ziDMLDJcvx07aM6xoEyWHQ引言...
- 手把手教你如何用 Decorator 装饰你的 Typescript?「实践」
-
作者:Nealyang转发连接:https://mp.weixin.qq.com/s/PFgc8xD7gT40-9qXNTpk7A...
- 推荐五个优秀的富文本编辑器
-
富文本编辑器是一种可嵌入浏览器网页中,所见即所得的文本编辑器。对于许多从事前端开发的小伙伴来说并不算陌生,它的应用场景非常广泛,平时发个评论、写篇博客文章等都能见到它的身影。...
- 基于vue + element的后台管理系统解决方案
-
作者:林鑫转发链接:https://github.com/lin-xin前言该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统(WebManagementSystem)开发。基于v...
- 开源富文本编辑器Quill 2.0重磅发布
-
开源富文本编辑器Quill正式发布2.0版本。官方TypeScript声明...
- Python之Web开发框架学习 Django-表单处理
-
在Django中创建表单实际上类似于创建模型。同样,我们只需要从Django类继承,则类属性将是表单字段。让我们在myapp文件夹中添加一个forms.py文件以包含我们的应用程序表单。我们将创建一个...
- Django测试入门:打造坚实代码基础的钥匙
-
这一篇说一下django框架的自动化测试,...
- Django ORM vs SQLAlchemy:到底谁更香?从入门到上头的选择指南
-
阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。...
- 超详细的Django 框架介绍,它来了!
-
时光荏苒,一晃小编的Tornado框架系列也结束了。这个框架虽然没有之前的FastAPI高流量,但是,它也是小编的心血呀。总共16篇博文,从入门到进阶,包含了框架的方方面面。虽然小编有些方面介绍得不是...
- 20《Nginx 入门教程》使用 Nginx 部署 Python 项目
-
今天的目标是完成一个PythonWeb项目的线上部署,我们使用最新的Django项目搭建一个简易的Web工程,然后基于Nginx服务部署该PythonWeb项目。1.前期准备...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)