百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Python语法之:Pandas数据合并总结

ztj100 2025-02-18 14:23 18 浏览 0 评论

Pandas有concat、append、join和merge四种方法用于dataframe拼接


concat、append、join、merge 区别如下:

1、.concat():pandas的顶级方法,提供了axis设置可用于df间行方向(增加行,下同)或列方向(增加列,下同)进行内联或外联拼接操作

2、.append():dataframe数据类型的方法,提供了行方向的拼接操作

3、.join():dataframe数据类型的方法,提供了列方向的拼接操作,支持左联、右联、内联和外联四种操作类型

4、.merge():pandas的顶级方法,提供了类似于SQL数据库连接操作的功能,支持左联、右联、内联和外联等全部四种SQL连接操作类型

concat

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,

keys=None, levels=None, names=None, verify_integrity=False,

copy=True)

"""

常用参数说明:

axis:拼接轴方向,默认为0,沿行拼接;若为1,沿列拼接

join:默认外联'outer',拼接另一轴所有的label,缺失值用NaN填充;内联'inner',只拼接另一轴相同的label;

join_axes: 指定需要拼接的轴的labels,可在join既不内联又不外联的时候使用

ignore_index:对index进行重新排序

keys:多重索引

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)

df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1)
print(df2)
print(pd.concat([df1,df2]))    # 默认沿axis=0,join=‘out’的方式进行concat  
print(pd.concat([df1,df2], ignore_index=True))    # 重新设定index(效果类似于pd.concat([df1,df2]).reset_index(drop=True))
print(pd.concat([df1,df2], axis=1))   # 沿列进行合并
print(pd.concat([df1,df2], axis=1, join='inner'))    # 沿列进行合并,采用外联方式因为行中只有index=3是重复的,所以只有一行
print(pd.concat([df1,df2], axis=1, join_axes=[df1.index]))   # 指定只取df1的index

from pandas import Index
index = Index([1,2,4])
print(pd.concat([df1,df2], axis=1, join_axes=[index]))   # 自定义index

print(pd.concat([df1,df2], axis=0,keys=["第一组","第二组"]))   # 通过key定义多重索引

append

append(self, other, ignore_index=False, verify_integrity=False)

"""

常用参数说明:

other:另一个df

ignore_index:若为True,则对index进行重排

verify_integrity:对index的唯一性进行验证,若有重复,报错。若已经设置了ignore_index,则该参数无效

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)


df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1.append(df2))    # 效果类似于pd.concat([df1,df2]) 
print(df1.append(df2,ignore_index=True))    # index重排,效果类似于pd.concat([df1, df2], ignore_index=True)
#print(df1.append(df2,verify_integrity=True))    # 因为两个df均有index=3,所以报错

join

join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

"""

常用参数说明:

on:参照的左边df列名key(可能需要先进行set_index操作),若未指明,按照index进行join

how:{‘left’, ‘right’, ‘outer’, ‘inner’}, 默认‘left’,即按照左边df的index(若声明了on,则按照对应的列);若为‘right’abs照左边的df

若‘inner’为内联方式;若为‘outer’为全连联方式。

sort:是否按照join的key对应的值大小进行排序,默认False

lsuffix,rsuffix:当left和right两个df的列名出现冲突时候,通过设定后缀的方式避免错误

"""

import pandas as pd
import numpy as np

df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
#print(df3.join(df4))     # 两者有相同的列名‘value’,所以报错
print(df3.join(df4 , lsuffix='_df3', rsuffix='_df4'))    # 通过添加后缀避免冲突
print(df3.set_index('lkey').join(df4.set_index('rkey'), how='outer',lsuffix='_df3',rsuffix='_df4'))    # 可以通过将两边的key进行set_index
print(df3.join(df4.set_index('rkey'), on='lkey',lsuffix='_df3',rsuffix='_df4'))   
# 也可以通过设置后边df中key,并通过on与指定的左边df中的列进行合并,返回的index不变

merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,

left_index=False, right_index=False, sort=False,

suffixes=('_x', '_y'), copy=True, indicator=False,

validate=None):

"""

既可作为pandas的顶级方法使用,也可作为DataFrame数据结构的方法进行调用

常用参数说明:

how:{'left’, ‘right’, ‘outer’, ‘inner’}, 默认‘inner’,类似于SQL的内联。'left’类似于SQL的左联;'right’类似于SQL的右联;

‘outer’类似于SQL的全联。

on:进行合并的参照列名,必须一样。若为None,方法会自动匹配两张表中相同的列名

left_on: 左边df进行连接的列

right_on: 右边df进行连接的列

suffixes: 左、右列名称前缀

validate:默认None,可定义为“one_to_one” 、“one_to_many” 、“many_to_one”和“many_to_many”,即验证是否一对一、一对多、多对一或

多对多关系

"""

"""

SQL语句复习:

内联:SELECT a.*, b.* from table1 as a inner join table2 as b on a.ID=b.ID

左联:SELECT a.*, b.* from table1 as a left join table2 as b on a.ID=b.ID

右联:SELECT a.*, b.* from table1 as a right join table2 as b on a.ID=b.ID

全联:SELECT a.*, b.* from table1 as a full join table2 as b on a.ID=b.ID

"""

import pandas as pd
df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
print(pd.merge(df3,df4))       # on为None,自动找寻相同的列名,即为'value',且默认为内联
print(pd.merge(df3,df4,how='outer'))   # 外联模式下
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey'))   # 默认内联,2个foo*2个bar
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='left'))    # 以左边的df3为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='right'))    # 以右边的df4为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='outer'))    # 全连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='inner'))    # 内连接

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: