百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Python数据分析之Pandas第二练:十分钟掌握DataFrame运算

ztj100 2025-02-18 14:23 20 浏览 0 评论

背景

在上一篇《Python数据分析之Pandas第一练:十分钟学会创建、查看和选择数据》中,我们练习了Pandas数据对象Series和DataFrame的基础操作,本篇将再用十分钟的时间继续相关运算的练习。

运算

Pandas主要使用值np.nan表示缺失的数据。默认情况下不包含在计算中。这次的练习对象还是使用上篇中生成的df,详细的生成过程可以到上篇文章中回顾。

df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])
df1
df1.loc[dates[0] : dates[1], "E"] = 1
df1.dropna(how="any")  # 丢弃所有缺少数据的行
df1.fillna(value=5)  # 填充丢失值
pd.isna(df1)  # 获取nan值的布尔判断结果 

df.mean(0)  # 默认值为0,按列进行统计
df.mean(1)  # 1按行进行统计

当运算对象具有不同的维度并且需要形状一致时,Pandas会自动按照指定的维数进行广播.

s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
df.sub(s, axis="index")  # 计算df - s
df.apply(np.cumsum)  # 将NumPy的累加函数应用到df上
df.apply(lambda x: x.max() - x.min())  #  计算最大、最小值之差
s.value_counts()  # 统计每类值的频数

str属性中配备了一些序列数据(Series)的字符串处理方法,使得在数组的每个元素上操作时非常简单。需要注意的是,默认情况下,str中的模式匹配通常使用正则表达式(在某些情况下总是使用它们)。

s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])
s.str.lower()  # 将s的值转变为小写,空值不生效

Pandas提供了各种功能,可以在join / merge-type操作的情况下将串联和数据框对象与各种索引和关系代数功能的设置逻辑相结合。

df = pd.DataFrame(np.random.randn(10, 4))
pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})
right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})
pd.merge(left, right, on="key")
left1 = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})
right1 = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})
pd.merge(left1, right1, on="key")

聚合操作涉及到下面步骤中的一个或者多个内容:

  • 按照条件把数据分成多个组
  • 对每个数据组单独用函数处理
  • 把处理后的数据结果整合到一起
df = pd.DataFrame( 
    { 
         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], 
         "B": ["one", "one", "two", "three", "two", "two", "one", "three"], 
         "C": np.random.randn(8), 
         "D": np.random.randn(8) 
    }
    )
df.groupby("A").sum()
df.groupby(["A", "B"]).sum()

熟练使用Excel的伙伴们会觉得这个操作跟透视表如出一辙,确实是这样的。

一起练习吧

以上就是这次练习的主要内容,大家一起练习来吧。如有问题可随时留言交流~~~

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: