百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Python数据分析之Pandas第二练:十分钟掌握DataFrame运算

ztj100 2025-02-18 14:23 8 浏览 0 评论

背景

在上一篇《Python数据分析之Pandas第一练:十分钟学会创建、查看和选择数据》中,我们练习了Pandas数据对象Series和DataFrame的基础操作,本篇将再用十分钟的时间继续相关运算的练习。

运算

Pandas主要使用值np.nan表示缺失的数据。默认情况下不包含在计算中。这次的练习对象还是使用上篇中生成的df,详细的生成过程可以到上篇文章中回顾。

df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])
df1
df1.loc[dates[0] : dates[1], "E"] = 1
df1.dropna(how="any")  # 丢弃所有缺少数据的行
df1.fillna(value=5)  # 填充丢失值
pd.isna(df1)  # 获取nan值的布尔判断结果 

df.mean(0)  # 默认值为0,按列进行统计
df.mean(1)  # 1按行进行统计

当运算对象具有不同的维度并且需要形状一致时,Pandas会自动按照指定的维数进行广播.

s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
df.sub(s, axis="index")  # 计算df - s
df.apply(np.cumsum)  # 将NumPy的累加函数应用到df上
df.apply(lambda x: x.max() - x.min())  #  计算最大、最小值之差
s.value_counts()  # 统计每类值的频数

str属性中配备了一些序列数据(Series)的字符串处理方法,使得在数组的每个元素上操作时非常简单。需要注意的是,默认情况下,str中的模式匹配通常使用正则表达式(在某些情况下总是使用它们)。

s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])
s.str.lower()  # 将s的值转变为小写,空值不生效

Pandas提供了各种功能,可以在join / merge-type操作的情况下将串联和数据框对象与各种索引和关系代数功能的设置逻辑相结合。

df = pd.DataFrame(np.random.randn(10, 4))
pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})
right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})
pd.merge(left, right, on="key")
left1 = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})
right1 = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})
pd.merge(left1, right1, on="key")

聚合操作涉及到下面步骤中的一个或者多个内容:

  • 按照条件把数据分成多个组
  • 对每个数据组单独用函数处理
  • 把处理后的数据结果整合到一起
df = pd.DataFrame( 
    { 
         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], 
         "B": ["one", "one", "two", "three", "two", "two", "one", "three"], 
         "C": np.random.randn(8), 
         "D": np.random.randn(8) 
    }
    )
df.groupby("A").sum()
df.groupby(["A", "B"]).sum()

熟练使用Excel的伙伴们会觉得这个操作跟透视表如出一辙,确实是这样的。

一起练习吧

以上就是这次练习的主要内容,大家一起练习来吧。如有问题可随时留言交流~~~

相关推荐

告别手动操作:一键多工作表合并的实用方法

通常情况下,我们需要将同一工作簿内不同工作表中的数据进行合并处理。如何快速有效地完成这些数据的整合呢?这主要取决于需要合并的源数据的结构。...

【MySQL技术专题】「优化技术系列」常用SQL的优化方案和技术思路

概述前面我们介绍了MySQL中怎么样通过索引来优化查询。日常开发中,除了使用查询外,我们还会使用一些其他的常用SQL,比如INSERT、GROUPBY等。对于这些SQL语句,我们该怎么样进行优化呢...

9.7寸视网膜屏原道M9i双系统安装教程

泡泡网平板电脑频道4月17日原道M9i采用Win8安卓双系统,对于喜欢折腾的朋友来说,刷机成了一件难事,那么原道M9i如何刷机呢?下面通过详细地图文,介绍原道M9i的刷机操作过程,在刷机的过程中,要...

如何做好分布式任务调度——Scheduler 的一些探索

作者:张宇轩,章逸,曾丹初识Scheduler找准定位:分布式任务调度平台...

mysqldump备份操作大全及相关参数详解

mysqldump简介mysqldump是用于转储MySQL数据库的实用程序,通常我们用来迁移和备份数据库;它自带的功能参数非常多,文中列举出几乎所有常用的导出操作方法,在文章末尾将所有的参数详细说明...

大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?

推荐学习...

亿级分库分表,如何丝滑扩容、如何双写灰度

以下是基于亿级分库分表丝滑扩容与双写灰度设计方案,结合架构图与核心流程说明:一、总体设计目标...

MYSQL表设计规范(mysql表设计原则)

日常工作总结,不是通用规范一、表设计库名、表名、字段名必须使用小写字母,“_”分割。...

怎么解决MySQL中的Duplicate entry错误?

在使用MySQL数据库时,我们经常会遇到Duplicateentry错误,这是由于插入或更新数据时出现了重复的唯一键值。这种错误可能会导致数据的不一致性和完整性问题。为了解决这个问题,我们可以采取以...

高并发下如何防重?(高并发如何防止重复)

前言最近测试给我提了一个bug,说我之前提供的一个批量复制商品的接口,产生了重复的商品数据。...

性能压测数据告诉你MySQL和MariaDB该怎么选

1.压测环境为了尽可能的客观公正,本次选择同一物理机上的两台虚拟机,一台用作数据库服务器,一台用作运行压测工具mysqlslap,操作系统均为UbuntuServer22.04LTS。...

屠龙之技 --sql注入 不值得浪费超过十天 实战中sqlmap--lv 3通杀全国

MySQL小结发表于2020-09-21分类于知识整理阅读次数:本文字数:67k阅读时长≈1:01...

破防了,谁懂啊家人们:记一次 mysql 问题排查

作者:温粥一、前言谁懂啊家人们,作为一名java开发,原来以为mysql这东西,写写CRUD,不是有手就行吗;你说DDL啊,不就是设计个表结构,搞几个索引吗。...

SpringBoot系列Mybatis之批量插入的几种姿势

...

MySQL 之 Performance Schema(mysql安装及配置超详细教程)

MySQL之PerformanceSchema介绍PerformanceSchema提供了在数据库运行时实时检查MySQL服务器的内部执行情况的方法,通过监视MySQL服务器的事件来实现监视内...

取消回复欢迎 发表评论: