基于mediapipe的人体姿态估计模型——没有GPU依然速度飞起
ztj100 2024-12-01 07:00 11 浏览 0 评论
关于人体姿态检测模型,我们前期也介绍过了很多相关的模型,比如基于Yolo-NAS的姿态检测以及基于YOLOv8的人体姿态检测,而人体姿态估计一直是计算机视觉任务中比较重要的一个模型。但是基于YOLO系列的人体姿态检测模型需要较大的算力,且很难在CPU模型上快速的运行。
基于mediapipe的人体姿态检测模型,可以检测图片或者视频流中的人体姿态检测,最重要的是可以在CPU上面快速运行,且可以运行在移动终端设备上,大大提高了模型的使用。mediapipe模型的姿态检测模型包含2个模型:
Pose detection model: 人体检测模型,首先通过此模型检测输入图片或者视频中存在人体
Pose landmarker model: 人体33个坐标点的标注,待检测到人体后,通过此模型进行人体33个姿态点进行备注
33个坐标点如下图:
在运行本期代码前,我们需要安装mediapipe,这里只需要使用pip install安装即可。
!pip install -q mediapipe==0.10.0
mediapipe提供了3种尺寸大小的模型,分别是lite, full, heavy三种尺寸大小的模型,当然heavy模型精度最高,其速度就会相应的降低。可以根据自己的特点选择不同的尺寸模型。
在运行代码前,需要下载不同尺寸的预训练模型,这里只需要输入如下代码即可
!wget -O pose_landmarker.task -q https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_heavy/float16/1/pose_landmarker_heavy.task
!wget -O pose_landmarker.task -q https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_heavy/float16/1/pose_landmarker_full.task
!wget -O pose_landmarker.task -q https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_heavy/float16/1/pose_landmarker_lite.task
下载完成后,放置在自己的项目文件夹
import cv2
img = cv2.imread("image.jpg")
模型支持输入图片或者视频,以及视频流。这里我们先加载一张图片,来进行图片中的人体姿态检测。由于mediapipe输出的是人体的33个坐标点,这里需要建立一个可视化函数来进行人体姿态检测的可视化显示
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
import numpy as np
def draw_landmarks_on_image(rgb_image, detection_result):
pose_landmarks_list = detection_result.pose_landmarks
annotated_image = np.copy(rgb_image)
for idx in range(len(pose_landmarks_list)):
pose_landmarks = pose_landmarks_list[idx]
pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
pose_landmarks_proto.landmark.extend([ landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks])
solutions.drawing_utils.draw_landmarks( annotated_image, pose_landmarks_proto, solutions.pose.POSE_CONNECTIONS,solutions.drawing_styles.get_default_pose_landmarks_style())
return annotated_image
接下来就可以进行人体姿态的检测了。
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
base_options = python.BaseOptions(model_asset_path='pose_landmarker.task')
options = vision.PoseLandmarkerOptions(
base_options=base_options,
output_segmentation_masks=True)
detector = vision.PoseLandmarker.create_from_options(options)
image = mp.Image.create_from_file("image.jpg")
detection_result = detector.detect(image)
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result)
cv2_imshow(cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR))
首先使用BaseOptions函数来加载预训练模型,并使用PoseLandmarkerOptions配置相关的检测参数,其参数如下:
running_mode:配置检测的是图片,还是视频
num_poses:需要检测的人体数量
min_pose_detection_confidence:pose_detection置信度
min_pose_presence_confidence:pose_presence置信度
min_tracking_confidence:pose_tracking置信度
output_segmentation_masks:是否输出mask的人体图
result_callback:LIVE_STREAM视频流参数
然后就可以使用detector检测器进行人体姿态的检测与估计了。detector检测器检测完成后,结果保存在detection_result中。其检测结果返回的数据如下:
PoseLandmarkerResult:
Landmarks:
Landmark #0:
x : 0.638852
y : 0.671197
z : 0.129959
visibility : 0.9999997615814209
presence : 0.9999984502792358
Landmark #1:
x : 0.634599
y : 0.536441
z : -0.06984
visibility : 0.999909
presence : 0.999958
... (33 landmarks per pose)
WorldLandmarks:
Landmark #0:
x : 0.067485
y : 0.031084
z : 0.055223
visibility : 0.9999997615814209
presence : 0.9999984502792358
Landmark #1:
x : 0.063209
y : -0.00382
z : 0.020920
visibility : 0.999976
presence : 0.999998
... (33 world landmarks per pose)
SegmentationMasks:
... (pictured below)
其数据是一个三维的数据坐标,只要得到了三维坐标,就可以使用可视化函数,进行数据的可视化操作了。
当然这里配置的output_segmentation_mask参数为true,因此模型也会输出人体检测的mask框,我们也可以可视化一下其人体检测的mask图片。
segmentation_mask = detection_result.segmentation_masks[0].numpy_view()
visualized_mask = np.repeat(segmentation_mask[:, :, np.newaxis], 3, axis=2) * 255
cv2_imshow(visualized_mask)
更多人体姿态检测:
人体33点坐标点:
0 - nose
1 - left eye (inner)
2 - left eye
3 - left eye (outer)
4 - right eye (inner)
5 - right eye
6 - right eye (outer)
7 - left ear
8 - right ear
9 - mouth (left)
10 - mouth (right)
11 - left shoulder
12 - right shoulder
13 - left elbow
14 - right elbow
15 - left wrist
16 - right wrist
17 - left pinky
18 - right pinky
19 - left index
20 - right index
21 - left thumb
22 - right thumb
23 - left hip
24 - right hip
25 - left knee
26 - right knee
27 - left ankle
28 - right ankle
29 - left heel
30 - right heel
31 - left foot index
32 - right foot index
相关推荐
- 电脑装系统用GHOST好,还是原装版本好?老司机都是这么装的
-
Hello大家好,我是兼容机之家的咖啡。安装Windows系统是原版ISO好还是ghost好呢?针对这个的问题,我们先来科普一下什么是ghost系统,和原版ISO镜像两者之间有哪些优缺点。如果是很了解...
- 苹果 iOS 14.5.1/iPadOS 14.5.1 正式版发布
-
IT之家5月4日消息今日凌晨,苹果发布了iOS14.5.1与iPadOS14.5.1正式版更新。这一更新距iOS14.5正式版发布过去了一周时间。IT之家了解到,苹果表示,...
- iOS 13.1.3 正式版发布 包含错误修复和改进
-
苹果今天发布了iOS13.1.3和iPadOS13.1.3,这是iOS13发布之后第四个升级补丁。iOS13.1.2两周前发布。iOS13.1.3主要包括针对iPad和...
- 还不理解 Error 和 Exception 吗,看这篇就够了
-
在Java中的基本理念是结构不佳的代码不能运行,发现错误的理想时期是在编译期间,因为你不用运行程序,只是凭借着对Java基本理念的理解就能发现问题。但是编译期并不能找出所有的问题,有一些N...
- Linux 开发人员发现了导致 MacBook“无法启动”的 macOS 错误
-
“多个严重”错误影响配备ProMotion显示屏的MacBookPro。...
- 启动系统时无法正常启动提示\windows\system32\winload.efi
-
启动系统时无法正常启动提示\windows\system32\winload.efi。该怎么解决? 最近有用户遇到了开机遇到的问题,是Windows未能启动。原因可能是最近更改了硬件或软件。虽然提...
- 离线部署之两种构建Ragflow镜像的方式,dify同理
-
在实际项目交付过程中,经常遇到要离线部署的问题,生产服务器无法连接外网,这时就需要先构建好ragflow镜像,然后再拷到U盘或刻盘,下面介绍两种构建ragflow镜像的方式。性能测试(网络情况好的情况...
- Go语言 error 类型详解(go语言 异常)
-
Go语言的error类型是用于处理程序运行中错误情况的核心机制。它通过显式的返回值(而非异常抛出)来管理错误,强调代码的可控性和清晰性。以下是详细说明及示例:一、error类型的基本概念内置接口...
- Mac上“闪烁的问号”错误提示如何修复?
-
现在Mac电脑的用户越来越多,Mac电脑在使用过程中也会出现系统故障。当苹果电脑无法找到系统软件时,Mac会给出一个“闪烁的问号”的标志。很多用户受到过闪烁问号这一常见的错误提示的影响,如何解决这个问...
- python散装笔记——177 sys 模块(python sys模块详解)
-
sys模块提供了访问程序运行时环境的函数和值,例如命令行参数...
- 30天自制操作系统:第一天(30天自制操作系统电子书)
-
因为咱们的目的是为了研究操作系统的组成,所以直接从系统启动的第二阶段的主引导记录开始。前提是将编译工具放在该文件目录的同级目录下,该工具为日本人川合秀实自制的编译程序,优化过的nasm编译工具。...
- 五大原因建议您现在不要升级iOS 13或iPadOS
-
今天苹果放出了iPadOS和iOS13的公测版本,任何对新版功能感兴趣的用户都可以下载安装参与测试。除非你想要率先体验Dark模式,以及使用AppleID来登陆Facebook等服务,那么外媒CN...
- Python安装包总报错?这篇解决指南让你告别pip烦恼!
-
在Python开发中,...
- 苹果提供了在M1 Mac上修复macOS重装错误的方案
-
#AppleM1芯片#在苹果新的M1Mac推出后不久,我们看到有报道称,在这些机器上恢复和重新安装macOS,可能会导致安装错误,使你的Mac无法使用。具体来说,错误信息如下:"An...
- 黑苹果卡代码篇三:常见卡代码问题,满满的干货
-
前言...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 电脑装系统用GHOST好,还是原装版本好?老司机都是这么装的
- 苹果 iOS 14.5.1/iPadOS 14.5.1 正式版发布
- iOS 13.1.3 正式版发布 包含错误修复和改进
- 还不理解 Error 和 Exception 吗,看这篇就够了
- Linux 开发人员发现了导致 MacBook“无法启动”的 macOS 错误
- 启动系统时无法正常启动提示\windows\system32\winload.efi
- 离线部署之两种构建Ragflow镜像的方式,dify同理
- Go语言 error 类型详解(go语言 异常)
- Mac上“闪烁的问号”错误提示如何修复?
- python散装笔记——177 sys 模块(python sys模块详解)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)