百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

[seaborn] seaborn学习笔记6-热图HEATMAPPLOT

ztj100 2024-12-01 07:00 14 浏览 0 评论

6 热图Heatmapplot

?(代码下载)?? 热图是指通过将矩阵单个的值表示为颜色的图形表示。热力图显示数值数据的一般视图非常有用,制作热图很简单,且不需要提取特定数据点。在seaborn中使用heatmap函数绘制热力图,此外我们也使用clustermap函数绘制树状图与热图。该章节主要内容有:

  1. 基础热图绘制 Basic Heatmap plot
  2. 热图外观设定 Customize seaborn heatmap
  3. 热图上使用标准化 Use normalization on heatmap
  4. 树状图与热图 Dendrogram with heatmap
# library 导入库
import seaborn as sns
import pandas as pd
import numpy as np
# jupyter notebook显示多行输出
from IPython.core.interactiveshell import InteractiveShell 
InteractiveShell.ast_node_interactivity = 'all'

1. 基础热图绘制 Basic Heatmap plot

  • 普通热图 Basic Heatmap
  • 相关矩阵热图 Correlation matrix
  • 相关矩阵半热图 an half heatmap of correlation matrix
  • 多数据热力图制作 Basic Heatmap of long format data
# 普通热图 Basic Heatmap
# Create a dataset (fake) 制作5行5列的矩阵
df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"])
# 显示数据
df
# Default heatmap: just a visualization of this square matrix 默认热力图
p1 = sns.heatmap(df)


a

b

c

d

e

0

0.260319

0.749665

0.534837

0.077599

0.645868

1

0.455260

0.088954

0.876201

0.468024

0.679460

2

0.422090

0.029897

0.652491

0.492516

0.112680

3

0.016669

0.979161

0.274547

0.093439

0.965549

4

0.039159

0.851814

0.794167

0.796855

0.109723

# 相关矩阵热图 Correlation matrix
# 一个常见的任务是检查某些变量是否相关可以轻松计算每对变量之间的相关性,并将其绘制为热图,发现哪个变量彼此相关。
# Create a dataset (fake) 创建数据
df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"])
df.head()
# Calculate correlation between each pair of variable 计算相关系数
corr_matrix=df.corr()
# 显示相关系数结果
corr_matrix
# plot it 绘图 cmap设定颜色版
sns.heatmap(corr_matrix, cmap='PuOr')


a

b

c

d

e

0

0.447492

0.083233

0.054378

0.528246

0.839064

1

0.966619

0.718003

0.584444

0.454353

0.319515

2

0.165938

0.500661

0.221050

0.304151

0.470321

3

0.012819

0.206002

0.317296

0.998902

0.546637

4

0.168106

0.935917

0.081234

0.652118

0.988459


a

b

c

d

e

a

1.000000

0.062998

0.219805

0.095833

0.160799

b

0.062998

1.000000

0.173022

0.040480

-0.101984

c

0.219805

0.173022

1.000000

-0.049702

-0.066863

d

0.095833

0.040480

-0.049702

1.000000

0.179716

e

0.160799

-0.101984

-0.066863

0.179716

1.000000

<matplotlib.axes._subplots.AxesSubplot at 0x17a4cc715c0>
# 相关矩阵半热图 an half heatmap of correlation matrix
# Create a dataset (fake) 建立数据
df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"])
# Calculate correlation between each pair of variable 计算相关系数
corr_matrix=df.corr()
# Can be great to plot only a half matrix 创建一个corr_matrix等大的O矩阵
mask = np.zeros_like(corr_matrix)
# np.triu_indices_from(mask)返回矩阵上三角形的索引
indices=np.triu_indices_from(mask)
# 显示索引结果
indices
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
    # mask设置具有缺失值的单元格将自动被屏蔽;square使每个单元格为正方形
    p2 = sns.heatmap(corr_matrix, mask=mask, square=True)
(array([0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4], dtype=int64),
 array([0, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4], dtype=int64))
# 多数据热力图制作 Basic Heatmap of long format data
# 创建两个函数列表
people=np.repeat(("A","B","C","D","E"),5)
feature=list(range(1,6))*5
value=np.random.random(25)
# 创建表格
df=pd.DataFrame({'feature': feature, 'people': people, 'value': value })
 
# plot it 创建透视表
df_wide=df.pivot_table( index='people', columns='feature', values='value' )
p2=sns.heatmap( df_wide, square=True)

2. 热图外观设定 Customize seaborn heatmap

  • 单元格值的显示 Annotate each cell with value
  • 自定义网格线 Custom grid lines
  • 轴的显示 Remove X or Y labels
  • 标签隐藏 Hide a few axis labels to avoid overlapping
  • 颜色条坐标显示范围设置 Coordinate range setting of color bar
# Create a dataset (fake)
df = pd.DataFrame(np.random.random((10,10)), columns=["a","b","c","d","e","f","g","h","i","j"])
# annot_kws设置各个单元格中的值,size设定大小
sns.heatmap(df, annot=True, annot_kws={"size": 7});
# 自定义网格线 Custom grid lines
sns.heatmap(df, linewidths=2, linecolor='yellow');
# 轴的显示 Remove X or Y labels
# 由xticklables和yticklabels控制坐标轴,cbar控制颜色条的显示
sns.heatmap(df, yticklabels=False, cbar=False);
# 标签隐藏 Hide a few axis labels to avoid overlapping
# xticklabels表示标签index为该值倍数时显示
sns.heatmap(df, xticklabels=3);
# 颜色条坐标显示范围设置 Coordinate range setting of color bar
sns.heatmap(df, vmin=0, vmax=0.5);

3. 热图上使用标准化 Use normalization on heatmap

  • 列的规范化 Column normalization
  • 行的规范化 Row normalization
# 列的规范化 Column normalization
# 有时矩阵某一列值远远高于其他列的值,导致整体热图各点颜色趋于两级,需要对列的数据进行规范化的
# Create a dataframe where the average value of the second column is higher:
df = pd.DataFrame(np.random.randn(10,10) * 4 + 3)
# 使得第一列数据明显大于其他列
df[1]=df[1]+40
# If we do a heatmap, we just observe that a column as higher values than others: 没有规范化的热力图
sns.heatmap(df, cmap='viridis');
# Now if we normalize it by column 规范化列
df_norm_col=(df-df.mean())/df.std()
sns.heatmap(df_norm_col, cmap='viridis');
# 行的规范化 Row normalization  
# 列的规范化相同的原理适用于行规范化。
# Create a dataframe where the average value of the second row is higher
df = pd.DataFrame(np.random.randn(10,10) * 4 + 3)
df.iloc[2]=df.iloc[2]+40
 
# If we do a heatmap, we just observe that a row has higher values than others: 第2行的数据明显大于其他行
sns.heatmap(df, cmap='viridis');
# 1: substract mean 行的规范化
df_norm_row=df.sub(df.mean(axis=1), axis=0)
# 2: divide by standard dev
df_norm_row=df_norm_row.div( df.std(axis=1), axis=0 )
# And see the result
sns.heatmap(df_norm_row, cmap='viridis');

4. 树状图与热图 Dendrogram with heatmap

  • 基础树状图与热图绘制 Dendrogram with heat map and coloured leaves
  • 树形图与热图规范化 normalize of Dendrogram with heatmap
  • 树形图与热图距离参数设定 distance of Dendrogram with
  • 树形图与热图聚类方法参数设定 cluster method of Dendrogram with heatmap
  • 图像颜色设定 Change color palette
  • 离群值设置 outliers set

树状图就是层次聚类的表现形式。层次聚类的合并算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程。简单的说层次聚类的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间的相似性,距离越小,相似度越高。并将距离最近的两个数据点或类别进行组合,生成聚类树。在树状图中通过线条连接表示两类数据的距离。

# 基础树状图与热图绘制 Dendrogram with heat map and coloured leaves
from matplotlib import pyplot as plt
import pandas as pd

# 使用mtcars数据集,通过一些数字变量提供几辆汽车的性能参数。 
# Data set mtcars数据集 下载
#url = 'https://python-graph-gallery.com/wp-content/uploads/mtcars.csv'
url ='https://gist.github.com/seankross/a412dfbd88b3db70b74b/#file-mtcars-csv'
df = pd.read_csv(url)
df = df.set_index('model')
# 横轴为汽车性能参数,纵轴为汽车型号
df.head()


mpg

cyl

disp

hp

drat

wt

qsec

vs

am

gear

carb

model












Mazda RX4

21.0

6

160.0

110

3.90

2.620

16.46

0

1

4

4

Mazda RX4 Wag

21.0

6

160.0

110

3.90

2.875

17.02

0

1

4

4

Datsun 710

22.8

4

108.0

93

3.85

2.320

18.61

1

1

4

1

Hornet 4 Drive

21.4

6

258.0

110

3.08

3.215

19.44

1

0

3

1

Hornet Sportabout

18.7

8

360.0

175

3.15

3.440

17.02

0

0

3

2

# Prepare a vector of color mapped to the 'cyl' column
# 设定发动机汽缸数6,4,,8指示不同的颜色
my_palette = dict(zip(df.cyl.unique(), ["orange","yellow","brown"]))
my_palette
# 列出不同汽车的发动机汽缸数
row_colors = df.cyl.map(my_palette)
row_colors
# metric数据度量方法, method计算聚类的方法
# standard_scale标准维度(0:行或1:列即每行或每列的含义,减去最小值并将每个维度除以其最大值)
sns.clustermap(df, metric="correlation", method="single", cmap="Blues", standard_scale=1, row_colors=row_colors)
{6: 'orange', 4: 'yellow', 8: 'brown'}






model
Mazda RX4              orange
Mazda RX4 Wag          orange
Datsun 710             yellow
Hornet 4 Drive         orange
Hornet Sportabout       brown
Valiant                orange
Duster 360              brown
Merc 240D              yellow
Merc 230               yellow
Merc 280               orange
Merc 280C              orange
Merc 450SE              brown
Merc 450SL              brown
Merc 450SLC             brown
Cadillac Fleetwood      brown
Lincoln Continental     brown
Chrysler Imperial       brown
Fiat 128               yellow
Honda Civic            yellow
Toyota Corolla         yellow
Toyota Corona          yellow
Dodge Challenger        brown
AMC Javelin             brown
Camaro Z28              brown
Pontiac Firebird        brown
Fiat X1-9              yellow
Porsche 914-2          yellow
Lotus Europa           yellow
Ford Pantera L          brown
Ferrari Dino           orange
Maserati Bora           brown
Volvo 142E             yellow
Name: cyl, dtype: object






<seaborn.matrix.ClusterGrid at 0x17a4e048da0>
# 树形图与热图规范化 normalize of Dendrogram with heatmap
# Standardize or Normalize every column in the figure
# Standardize 标准化
sns.clustermap(df, standard_scale=1)
# Normalize 正则化
sns.clustermap(df, z_score=1)
<seaborn.matrix.ClusterGrid at 0x17a4e0266d8>






<seaborn.matrix.ClusterGrid at 0x17a4e0e3fd0>
# 树形图与热图距离参数设定 distance of Dendrogram with heatmap
# 相似性
sns.clustermap(df, metric="correlation", standard_scale=1)
# 欧几里得距离
sns.clustermap(df, metric="euclidean", standard_scale=1)
<seaborn.matrix.ClusterGrid at 0x17a4dfd6588>






<seaborn.matrix.ClusterGrid at 0x17a4de86048>
# 树形图与热图聚类方法参数设定 cluster method of Dendrogram with heatmap
# single-linkage算法
sns.clustermap(df, metric="euclidean", standard_scale=1, method="single")
# 聚类分析法ward,推荐使用
sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward")
<seaborn.matrix.ClusterGrid at 0x17a4df7dc88>






<seaborn.matrix.ClusterGrid at 0x17a4f550f98>
# 图像颜色设定 Change color palette 
sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward", cmap="mako")
sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward", cmap="viridis")
<seaborn.matrix.ClusterGrid at 0x17a4e298f98>






<seaborn.matrix.ClusterGrid at 0x17a4e298748>
# 离群值设置 outliers set
# Ignore outliers
# Let's create an outlier in the dataset, 添加离群值
df.iloc[15,5] = 1000
# use the outlier detection 计算时忽略离群值
sns.clustermap(df, robust=True)
# do not use it 不忽略离群值
sns.clustermap(df, robust=False)
<seaborn.matrix.ClusterGrid at 0x17a4ff99a58>






<seaborn.matrix.ClusterGrid at 0x17a4f943278>

相关推荐

Java对象序列化与反序列化的那些事

Java对象序列化与反序列化的那些事在Java的世界里,对象序列化和反序列化就像一对孪生兄弟,它们共同构成了Java对象存储和传输的基础。如果你曾经尝试将对象保存到文件中,或者在网络中传输对象,那么你...

集合或数组转成String字符串(集合怎么转换成字符串)

1.将集合转成String字符串Strings="";for(inti=0;i<numList.size;i++){if(s==""){s=numL...

java学习分享:Java截取(提取)子字符串(substring())

在String中提供了两个截取字符串的方法,一个是从指定位置截取到字符串结尾,另一个是截取指定范围的内容。下面对这两种方法分别进行介绍。1.substring(intbeginIndex)形...

deepseek提示词:sql转c#代码示例。

SELECTRIGHT('0000'+CAST(DATEDIFF(DAY,'2024-01-01',GETDATE())ASVARCHAR(4)),4)...

Java 21 新特性的实践,确实很丝滑!

1虚拟线程创建虚拟线程...

为什么Java中的String是不可变的(Immutable)

在Java中,String类型是用于表示字符串的类,而字符串则是字符序列,是Java编程中最常用的数据类型之一。String类是不可变的,这意味着一旦创建,字符串的值就不能改变,下面我们就来介绍一下为...

Java中读取File文件内容转为String类型

@Java讲坛杨工开发中常常会碰到读取磁盘上的配置文件等内容,然后获取文件内容转字符串String类型,那么就需要编写一个API来实现这样的功能。首先准备一个测试需要的文件test.xml...

从Pandas快速切换到Polars :数据的ETL和查询

对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。我们以前的两篇文章来测试Pandas1.5.3、polar和Pandas...

Pandas高手养成记:10个鲜为人知的高效数据处理技巧

Pandas是Python中非常强大的数据分析库,提供了高效的数据结构和数据处理工具。以下是一些鲜为人知但极其有用的Pandas数据处理技巧,可以帮助你提高工作效率:使用.eval()执行行...

灵活筛选数据,pandas无需指定行列的筛选方法,步骤详解

pandas库可轻松地筛选出符合特定条件的数据,无需指定筛选的行和列。通过灵活运用pandas的筛选功能,我们能够高效、准确地获取到感兴趣的数据,本文将介绍以下几种方法,在不指定行列的情况下使用pan...

【Pandas】(4)基本操作(pandas的基本操作)

选择数据获取列单列获取要获取DataFrame的单个列,你可以使用列名以两种不同的方式:...

「Python数据分析」Pandas基础,用iloc函数按行列位置选择数据

前面我们学过,使用loc函数,通过数据标签,也就是行标签和列标签来选择数据。行和列的标签,是在数据获取,或者是生成的时候,就已经定义好的。行数据标签,也就是唯一标识数据,不重复的一列,相当于数据库中的...

Python数据的选取和处理(python数据提取方法)

importpandasaspdimportnumpyasnpdata=pd.DataFrame(np.arange(1,10).reshape(3,3),index=['...

天秀!一张图就能彻底搞定Pandas(10分钟搞定pandas)

作者:刘早起公众号:早起Python大家好,在三月初,我曾给大家分享过一份Matplotlib绘图小抄,详见收下这份来自GitHub的神器,一图搞定Matplotlib!昨天在面向GitHub编程时,...

Python学不会来打我(92)python代码调试知识总结(五)属性问题

Attributeerror是属性问题,这个问题的报错也经常会出现,今天我们就分享一下:Python中引发AttributeError的常见原因及对应解决方案的详细分析。...

取消回复欢迎 发表评论: