百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

从Pandas快速切换到Polars :数据的ETL和查询

ztj100 2025-07-03 02:34 30 浏览 0 评论

对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。

我们以前的两篇文章来测试Pandas 1.5.3、polar和Pandas 2.0.0之间的性能了,Polars 正好可以解决大数据量是处理的问题,所以本文将介绍如何将日常的数据ETL和查询过滤的Pandas转换成polars。

Polars的优势

Polars是一个用于Rust和Python的DataFrame库。

  • Polars利用机器上所有可用的内核,而pandas使用单个CPU内核来执行操作。
  • Polars比pandas相对轻量级,没有依赖关系,这使得导入Polars的速度更快。导入Polars只需要70毫秒,而导入pandas需要520毫秒。
  • Polars进行查询优化减少了不必要的内存分配。它还能够以流方式部分或全部地处理查询。
  • Polars可以处理比机器可用RAM更大的数据集。

ETL

Extract, Transform, and Load (ETL)的过程是怎样的:

“提取、转换和加载(ETL)是将来自多个数据源的数据组合到称为数据仓库的过程。ETL使用一组业务规则来清理和组织原始数据,并为存储、数据分析和机器学习(ML)做好准备。可以通过数据分析解决特定的业务智能需求(例如预测业务决策的结果、生成报告、减少操作效率低下,等等)。(来源:AWS)

Polars和Pandas都支持从各种来源读取数据,包括CSV、Parquet和JSON。

df = pl.read_csv('data.csv') 
df = pl.read_parquet('data.parquet') 
df = pl.read_json('data.json')

对于数据的读取方面和Pandas基本一致。

转换是ETL中最重要、最困难和最耗时的步骤。

polar支持Pandas函数的一个子集,所以我们可以使用熟悉的Pandas函数来执行数据转换。

df = df.select(['A', 'C']) 
df = df.rename({‘A’: ‘ID’, ‘C’: ‘Total’}) 
df = df.filter(pl.col('A') > 2) 
df = df.groupby('A').agg({'C': 'sum'})

这些Pandas函数都可以直接使用。

创建新列:

df = df.with_column(pl.col(‘Total’) / 2, ‘Half Total’)

处理空值:

df = df.fill_null(0) 
df_filled = df.fill_null('backward') 
df = df.fillna(method='ffill')

Dataframe 的合并

#pandas 
df_join = pd.merge(df1, df2, on='A') 
#polars 
df_join = df1.join(df2, on='A')

连接两个DF

#pandas 
df_union = pd.concat([df1, df2], ignore_index=True) 
#polars 
df_union = pl.vstack([df1, df2])

polar使用与Pandas相同的函数来将数据保存到CSV、JSON和Parquet文件中。

# CSV 
df.to_csv(file) 
# JSON 
df.to_json(file) 
# Parquet 
df.to_parquet(file)

最后,如果你还需要使用Pandas做一些特殊的操作,可以使用:

df.to_pandas()

这可以将polar的DF转换成pandas的DF。

最后我们整理一个简单的表格:

数据的查询过滤

我们的日常工作中,数据的查询是最重要,也是用的最多的,所以在这里我们再整理下查询过滤的操作。

首先创建一个要处理的DataFrame。

# pandas 
import pandas as pd 

# read csv 
df_pd = pd.read_csv("datasets/sales_data_with_stores.csv") 

# display the first 5 rows 
df_pd.head()
# polars 
import polars as pl 

# read_csv 
df_pl = pl.read_csv("datasets/sales_data_with_stores.csv") 

# display the first 5 rows 
df_pl.head()

polars首先显示了列的数据类型和输出的形状,这对我们来说非常好。下面我们进行一些查询,我们这里只显示一个输出,因为结果都是一样的:

1、按数值筛选

# pandas 
df_pd[df_pd["cost"] > 750] 
df_pd.query('cost > 750') 

# polars 
df_pl.filter(pl.col("cost") > 750)

2、多个条件查询

pandas和polar都支持根据多个条件进行过滤。我们可以用“and”和“or”逻辑组合条件。

# pandas 
df_pd[(df_pd["cost"] > 750) & (df_pd["store"] == "Violet")] 

# polars 
df_pl.filter((pl.col("cost") > 750) & (pl.col("store") == "Violet"))

3、isin

pandas的isin方法可用于将行值与值列表进行比较。当条件包含多个值时,它非常有用。这个方法的polar版本是" is_in "。

# pandas 
df_pd[df_pd["product_group"].isin(["PG1", "PG2", "PG5"])] 

# polars 
df_pl.filter(pl.col("product_group").is_in(["PG1", "PG2", "PG5"]))

4、选择列的子集

为了选择列的子集,我们可以将列名传递给pandas和polar,如下所示:

cols = ["product_code", "cost", "price"] 

# pandas (both of the following do the job) 
df_pd[cols] 
df_pd.loc[:, cols] 

# polars 
df_pl.select(pl.col(cols))

5、选择行子集

pandas中可以使用loc或iloc方法选择行。在polar则更简单。

# pandas 
df_pd.iloc[10:20] 

# polars 
df_pl[10:20]

选择相同的行,但只选择前三列:

# pandas 
df_pd.iloc[10:20, :3] 

# polars 
df_pl[10:20, :3]

如果要按名称选择列:

# pandas 
df_pd.loc[10:20, ["store", "product_group", "price"]] 

# polars 
df_pl[10:20, ["store", "product_group", "price"]]

按数据类型选择列:

我们还可以选择具有特定数据类型的列。

# pandas 
df_pd.select_dtypes(include="int64") 

# polars 
df_pl.select(pl.col(pl.Int64))

总结

可以看到polar与pandas非常相似,所以如果在处理大数据集的时候,我们可以尝试使用polar,因为它在处理大型数据集时的效率要比pandas高。

相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: