「Python实现数据可视化」创建3D柱状图
ztj100 2024-12-01 07:00 17 浏览 0 评论
虽然matplotlib主要专注于绘图,并且主要是二维的图形,但是它也有一些不同的扩展,能让我们在地理图上绘图,让我们把Excel和3D图表结合起来。在matplotlib的世界里,这些扩展叫做工具包(toolkits)。工具包是一些关注在某个话题(如3D绘图)的特定函数的集合。
比较流行的工具包有Basemap、GTK 工具、Excel工具、Natgrid、AxesGrid和mplot3d。
本节将探索关于mplot3d的更多功能。mpl_toolkits.mplot3工具包提供了一些基本的3D绘图功能,其支持的图表类型包括散点图(scatter)、曲面图(surf)、线图(line)和网格图(mesh)。虽然mplot3d不是一个最好的3D图形绘制库,但是它是伴随着matplotlib产生的,因此我们对其接口已经很熟悉了。
准备工作
基本来讲,我们仍然需要创建一个图表并把想要的坐标轴添加到上面。但不同的是我们为图表指定的是3D视图,并且添加的坐标轴是Axes3D。
现在,我们可以使用几乎相同的函数来绘图了。当然,函数的参数是不同的,需要为3个坐标轴提供数据。
例如,我们要为函数mpl_toolkits.mplot3d.Axes3D.plot指定xs、ys、zs和zdir参数。其他的参数则直接传给matplotlib.axes.Axes.plot。下面来解释一下这些特定的参数。
1.xs和ys:x轴和y轴坐标。
2.zs:这是z轴的坐标值,可以是所有点对应一个值,或者是每个点对应一个值。
3.zdir:决定哪个坐标轴作为z轴的维度(通常是zs,但是也可以是xs或者ys)。
提示:模块mpl_toolkits.mplot3d.art3d包含了3D artist代码和将2D artists转化为3D版本的函数。在该模块中有一个rotate_axes方法,该方法可以被添加到Axes3D中来对坐标重新排序,这样坐标轴就与zdir一起旋转了。zdir默认值为z。在坐标轴前加一个'``-``'会进行反转转换,这样一来,zdir的值就可以是x、-x、y、-y、z或者-z。
操作步骤
以下代码演示了我们所解释的概念。
import random
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.mplot3d import Axes3D
mpl.rcParams['font.size'] = 10
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for z in [2011, 2012, 2013, 2014]:
xs = xrange(1,13)
ys = 1000 * np.random.rand(12)
color =plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)
ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))
ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('Sales Net [usd]')
plt.show()
上述代码生成如图5-1所示的图表。
工作原理
我们需要像在2D世界中那样做相同的准备工作。不同的是,在这里需要指定后端(backend)的种类。然后生成了一些随机数据,例如4年的销售额(2011-2014)。
我们需要为3D坐标轴指定相同的Z值。
从颜色映射集合中随机选择一种颜色,然后把它和每一个Z-order集合的xs、ys对关联起来。最后,用xs、ys对渲染出柱状条序列。
补充说明
其他的一些matplotlib的2D绘图函数在这里也是可以用的,例如scatter()和plot()有着相似的接口,但有额外的点标记大小参数。我们对contour、contourf和bar也非常熟悉。
仅在3D中出现的新图表类型有线框图(wireframe)、曲面图(surface)和三翼面图(tri-surface)。
在下面的示例代码中,我们绘制了著名的Pringle函数的三翼面图,数学专业上的叫法是双曲面抛物线(hyperbolic paraboloid)。
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
n_angles = 36
n_radii = 8
# An array of radii
# Does not include radius r=0, this is to eliminate duplicate points
radii = np.linspace(0.125, 1.0, n_radii)
# An array of angles
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords
# (0, 0) is added here. There are no duplicate points in the (x, y)
plane
x = np.append(0, (radii * np.cos(angles)).flatten())
y = np.append(0, (radii * np.sin(angles)).flatten())
# Pringle surface
z = np.sin(-x * y)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
plt.show()
上面的代码生成如图5-2所示的图形。
本文摘自《Python数据可视化编程实战》
内容简介:本书是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数据可视化效果。
全书共8章,分别介绍了准备工作环境、了解数据、绘制并定制化图表、学习更多图表和定制化、创建3D可视化图表、用图像和地图绘制图表、使用正确的图表理解数据以及更多的matplotlib知识。
本书适合那些对Python编程有一定基础的开发人员阅读,可以帮助读者从头开始了解数据、数据格式、数据可视化,并学会使用Python可视化数据。
相关推荐
- Java对象序列化与反序列化的那些事
-
Java对象序列化与反序列化的那些事在Java的世界里,对象序列化和反序列化就像一对孪生兄弟,它们共同构成了Java对象存储和传输的基础。如果你曾经尝试将对象保存到文件中,或者在网络中传输对象,那么你...
- 集合或数组转成String字符串(集合怎么转换成字符串)
-
1.将集合转成String字符串Strings="";for(inti=0;i<numList.size;i++){if(s==""){s=numL...
- java学习分享:Java截取(提取)子字符串(substring())
-
在String中提供了两个截取字符串的方法,一个是从指定位置截取到字符串结尾,另一个是截取指定范围的内容。下面对这两种方法分别进行介绍。1.substring(intbeginIndex)形...
- deepseek提示词:sql转c#代码示例。
-
SELECTRIGHT('0000'+CAST(DATEDIFF(DAY,'2024-01-01',GETDATE())ASVARCHAR(4)),4)...
- Java 21 新特性的实践,确实很丝滑!
-
1虚拟线程创建虚拟线程...
- 为什么Java中的String是不可变的(Immutable)
-
在Java中,String类型是用于表示字符串的类,而字符串则是字符序列,是Java编程中最常用的数据类型之一。String类是不可变的,这意味着一旦创建,字符串的值就不能改变,下面我们就来介绍一下为...
- Java中读取File文件内容转为String类型
-
@Java讲坛杨工开发中常常会碰到读取磁盘上的配置文件等内容,然后获取文件内容转字符串String类型,那么就需要编写一个API来实现这样的功能。首先准备一个测试需要的文件test.xml...
- 从Pandas快速切换到Polars :数据的ETL和查询
-
对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。我们以前的两篇文章来测试Pandas1.5.3、polar和Pandas...
- Pandas高手养成记:10个鲜为人知的高效数据处理技巧
-
Pandas是Python中非常强大的数据分析库,提供了高效的数据结构和数据处理工具。以下是一些鲜为人知但极其有用的Pandas数据处理技巧,可以帮助你提高工作效率:使用.eval()执行行...
- 灵活筛选数据,pandas无需指定行列的筛选方法,步骤详解
-
pandas库可轻松地筛选出符合特定条件的数据,无需指定筛选的行和列。通过灵活运用pandas的筛选功能,我们能够高效、准确地获取到感兴趣的数据,本文将介绍以下几种方法,在不指定行列的情况下使用pan...
- 【Pandas】(4)基本操作(pandas的基本操作)
-
选择数据获取列单列获取要获取DataFrame的单个列,你可以使用列名以两种不同的方式:...
- 「Python数据分析」Pandas基础,用iloc函数按行列位置选择数据
-
前面我们学过,使用loc函数,通过数据标签,也就是行标签和列标签来选择数据。行和列的标签,是在数据获取,或者是生成的时候,就已经定义好的。行数据标签,也就是唯一标识数据,不重复的一列,相当于数据库中的...
- Python数据的选取和处理(python数据提取方法)
-
importpandasaspdimportnumpyasnpdata=pd.DataFrame(np.arange(1,10).reshape(3,3),index=['...
- 天秀!一张图就能彻底搞定Pandas(10分钟搞定pandas)
-
作者:刘早起公众号:早起Python大家好,在三月初,我曾给大家分享过一份Matplotlib绘图小抄,详见收下这份来自GitHub的神器,一图搞定Matplotlib!昨天在面向GitHub编程时,...
- Python学不会来打我(92)python代码调试知识总结(五)属性问题
-
Attributeerror是属性问题,这个问题的报错也经常会出现,今天我们就分享一下:Python中引发AttributeError的常见原因及对应解决方案的详细分析。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)