百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Tensor:Pytorch神经网络界的Numpy

ztj100 2024-11-14 19:23 14 浏览 0 评论

Tensor

Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。

但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。

对于Tensor,从接口划分,我们大致可分为2类:

1.torch.function:如torch.sum、torch.add等。2.tensor.function:如tensor.view、tensor.add等。

而从是否修改自身来划分,会分为如下2类:

1.不修改自身数据,如x.add(y),x的数据不变,返回一个新的Tensor。2.修改自身数据,如x.add_(y),运算结果存在x中,x被修改。

简单的理解就是方法名带不带下划线的问题。

现在,我们来实现2个数组对应位置相加,看看其效果就近如何:

import torch

x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
print(x + y)
print(x.add(y))
print(x)
print(x.add_(y))
print(x)

运行之后,效果如下:

下面,我们来正式讲解Tensor的使用方式。

创建Tensor

与Numpy一样,创建Tensor也有很多的方法,可以自身的函数进行生成,也可以通过列表或者ndarray进行转换,同样也可以指定维度等。具体方法如下表(数组即张量):

函数

意义

Tensor(*size)

直接从参数构造,支持list,Numpy数组

eye(row,column)

创建指定行列的二维Tensor

linspace(start,end,steps)

从start到end,均匀切分成steps份

logspace(start,end,steps)

从10^start到10^and,均分成steps份

rand/randn(*size)

生成[0,1)均匀分布/标准正态分布的数据

ones(*size)

生成指定shape全为1的张量

zeros(*size)

生成指定shape全为0的张量

ones_like(t)

返回与t的shape相同的张量,且元素全为1

zeros_like(t)

返回与t的shape相同的张量,且元素全为0

arange(start,end,step)

在区间[start,end)上,以间隔step生成一个序列张量

from_Numpy(ndarray)

从ndarray创建一个Tensor

这里需要注意Tensor有大写的方法也有小写的方法,具体效果我们先来看看代码:

import torch

t1 = torch.tensor(1)
t2 = torch.Tensor(1)
print("值{0},类型{1}".format(t1, t1.type()))
print("值{0},类型{1}".format(t2, t2.type()))

运行之后,效果如下:

可以看到,tensor与Tensor生成的值的类型就不同,而且t2(Tensor)返回一个大小为1的张量,而t1(tensor)返回的就是1这个值。

其他示例如下:

import torch
import numpy as np

t1 = torch.zeros(1, 2)
print(t1)
t2 = torch.arange(4)
print(t2)
t3 = torch.linspace(10, 5, 6)
print(t3)
nd = np.array([1, 2, 3, 4])
t4 = torch.from_numpy(nd)
print(t4)

其他例子基本与上面基本差不多,这里不在赘述。

修改Tensor维度

同样的与Numpy一样,Tensor一样有维度的修改函数,具体的方法如下表所示:

函数

意义

size()

返回张量的shape,即维度

numel(input)

计算张量的元素个数

view(*shape)

修改张量的shape,但View返回的对象与源张量共享内存,修改一个,另一个也被修改。Reshape将生成新的张量,而不要求源张量是连续的,View(-1)展平数组

resize

类似与view,但在size超出时,会重新分配内存空间

item

若张量为单元素,则返回Python的标量

unsqueeze

在指定的维度增加一个“1”

squeeze

在指定的维度压缩一个“1”

示例代码如下所示:

import torch

t1 = torch.Tensor([[1, 2]])
print(t1)
print(t1.size())
print(t1.dim())
print(t1.view(2, 1))
print(t1.view(-1))
print(torch.unsqueeze(t1, 0))
print(t1.numel())

运行之后,效果如下:

截取元素

当然,我们创建Tensor张量,是为了使用里面的数据,那么就不可避免的需要获取数据进行处理,具体截取元素的方式如表:

函数

意义

index_select(input,dim,index)

在指定维度选择一些行或者列

nonzero(input)

获取非0元素的下标

masked_select(input,mask)

使用二元值进行选择

gather(input,dim,index)

在指定维度上选择数据,输出的维度与index一致(index的类型必须是LongTensor类型的)

scatter_(input,dim,index,src)

为gatter的反操作,根据指定索引补充数据(将src中数据根据index中的索引按照dim的方向填进input中)

示例代码如下所示:

import torch

# 设置随机数种子,保证每次运行结果一致
torch.manual_seed(100)
t1 = torch.randn(2, 3)
# 打印t1
print(t1)
# 输出第0行数据
print(t1[0, :])
# 输出t1大于0的数据
print(torch.masked_select(t1, t1 > 0))
# 输出t1大于0的数据索引
print(torch.nonzero(t1))
# 获取第一列第一个值,第二列第二个值,第三列第二个值为第1行的值
# 获取第二列的第二个值,第二列第二个值,第三列第二个值为第2行的值
index = torch.LongTensor([[0, 1, 1], [1, 1, 1]])
# 取0表示以行为索引
a = torch.gather(t1, 0, index)
print(a)
# 反操作填0
z = torch.zeros(2, 3)
print(z.scatter_(1, index, a))

运行之后,效果如下:

我们a = torch.gather(t1, 0, index)对其做了一个图解,方便大家理解。如下图所示:

当然,我们直接有公司计算,因为这么多数据标线实在不好看,这里博主列出转换公司供大家参考:

当dim=0时,out[i,j]=input[index[i,j]][j]
当dim=1时,out[i,j]=input[i][index[i][j]]

简单的数学运算

与Numpy一样,Tensor也支持数学运算。这里,博主列出了常用的数学运算函数,方便大家参考:

函数

意义

abs/add

绝对值/加法

addcdiv(t,v,t1,t2)

t1与t2逐元素相除后,乘v加t

addcmul(t,v,t1,t2)

t1与t2逐元素相乘后,乘v加t

ceil/floor

向上取整/向下取整

clamp(t,min,max)

将张量元素限制在指定区间

exp/log/pow

指数/对数/幂

mul(或*)/neg

逐元素乘法/取反

sigmoid/tanh/softmax

激活函数

sign/sqrt

取符号/开根号

需要注意的是,上面表格所有的函数操作均会创建新的Tensor,如果不需要创建新的,使用这些函数的下划线"_"版本。

示例如下:

t = torch.Tensor([[1, 2]])
t1 = torch.Tensor([[3], [4]])
t2 = torch.Tensor([5, 6])
# t+0.1*(t1/t2)
print(torch.addcdiv(t, 0.1, t1, t2))
# t+0.1*(t1*t2)
print(torch.addcmul(t, 0.1, t1, t2))
print(torch.pow(t,3))
print(torch.neg(t))

运行之后,效果如下:

上面的这些函数都很好理解,只有一个函数相信没接触机器学习的时候,不大容易理解。也就是sigmoid()激活函数,它的公式如下:

归并操作

简单的理解,就是对张量进行归并或者说合计等操作,这类操作的输入输出维度一般并不相同,而且往往是输入大于输出维度。而Tensor的归并函数如下表所示:

函数

意义

cumprod(t,axis)

在指定维度对t进行累积

cumsum

在指定维度对t进行累加

dist(a,b,p=2)

返回a,b之间的p阶范数

mean/median

均值/中位数

std/var

标准差/方差

norm(t,p=2)

返回t的p阶范数

prod(t)/sum(t)

返回t所有元素的积/和

示例代码如下所示:

t = torch.linspace(0, 10, 6)
a = t.view((2, 3))
print(a)
b = a.sum(dim=0)
print(b)
b = a.sum(dim=0, keepdim=True)
print(b)

运行之后,效果如下:

需要注意的是,sum函数求和之后,dim的元素个数为1,所以要被去掉,如果要保留这个维度,则应当keepdim=True,默认为False。

比较操作

在量化交易中,我们一般会对股价进行比较。而Tensor张量同样也支持比较的操作,一般是进行逐元素比较。具体函数如下表:

函数

意义

equal

比较张量是否具有相同的shape与值

eq

比较张量是否相等,支持broadcast

ge/le/gt/lt

大于/小于比较/大于等于/小于等于比较

max/min(t,axis)

返回最值,若指定axis,则额外返回下标

topk(t,k,dim)

在指定的dim维度上取最高的K个值

示例代码如下所示:

t = torch.Tensor([[1, 2], [3, 4]])
t1 = torch.Tensor([[1, 1], [4, 4]])
# 获取最大值
print(torch.max(t))
# 比较张量是否相等
# equal直接返回True或False
print(torch.equal(t, t1))
# eq返回对应位置是否相等的布尔值与两者维度相同
print(torch.eq(t, t1))
# 取最大的2个元素,返回索引与值
print(torch.topk(t, 1, dim=0))

运行之后,输出如下:

矩阵运算

机器学习与深度学习中,存在大量的矩阵运算。与Numpy一样常用的矩阵运算一样,一种是逐元素相乘,一种是点积乘法。函数如下表所示:

函数

意义

dot(t1,t2)

计算t1与t2的点积,但只能计算1维张量

mm(mat1,mat2)

计算矩阵乘法

bmm(tatch1,batch2)

含batch的3D矩阵乘法

mv(t1,v1)

计算矩阵与向量乘法

t

转置

svd(t)

计算t的SVD分解

这里有3个主要的点积计算需要区分,dot()函数只能计算1维张量,mm()函数只能计算二维的张量,bmm只能计算三维的矩阵张量。示例如下:

# 计算1维点积
a = torch.Tensor([1, 2])
b = torch.Tensor([3, 4])
print(torch.dot(a, b))
# 计算2维点积
a = torch.randint(10, (2, 3))
b = torch.randint(6, (3, 4))
print(torch.mm(a, b))
# 计算3维点积
a = torch.randint(10, (2, 2, 3))
b = torch.randint(6, (2, 3, 4))
print(torch.bmm(a, b))

运行之后,输出如下:

相关推荐

如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL

阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...

Python数据分析:探索性分析

写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...

CSP-J/S冲奖第21天:插入排序

...

C++基础语法梳理:算法丨十大排序算法(二)

本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...

C 语言的标准库有哪些

C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...

[深度学习] ncnn安装和调用基础教程

1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...

用rust实现经典的冒泡排序和快速排序

1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

C++特性使用建议

1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...

Qt4/5升级到Qt6吐血经验总结V202308

00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...

到底什么是C++11新特性,请看下文

C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...

掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!

C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...

经典算法——凸包算法

凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...

一起学习c++11——c++11中的新增的容器

c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...

C++ 编程中的一些最佳实践

1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...

取消回复欢迎 发表评论: