PyTorch深度学习框架基础——张量
ztj100 2024-11-14 19:23 18 浏览 0 评论
Tensors(张量)
张量(tensor)是矩阵向任意维度的推广。张量的维度(dimension)通常叫作轴(axis),张量轴的个数也叫作阶(rank)。
Tensors张量,与numpy中的ndarray类似,在pytorch中,Tensors可以使用GPU进行计算,默认记录计算轨迹,从而方便求导。
张量的属性
阶:张量的轴的个数
形状:张量沿每个轴的维度大小(元素个数)。在Python中一般用整数元组表示。标量的形状为空元组
数据类型(在Python库中通常叫作dtype):张量中所包含数据的类型
PyTorch中的张量
创建torch数据
torch_1 = torch.eye(4,4)#创建一个4乘4维的张量
torch_2 = torch.zeros(4,4)#创建一个4乘4的全零张量
torch_3 = torch.arange(16).reshape(2,2,-1)#定义一个范围0~15,然后修改维度第一维度有两个,第二维度为2,第三维度-1:自动填充
张量的形状
print(torch_1.shape)
print(torch_2.size())
常用操作函数
1、torch.cat()
张量的拼接
第一个参数:元组。拼接的张量放进元组
第二个参数。拼接的轴
2、torch.squeeze、torch.unsqueeze
torch.squeeze 压缩维度,把维度为1 的去掉
torch_squeeze = torch.squeeze(torch_12)#shape(1,1,4)去掉为1的维度
print('torch_squeeze.shape',torch_squeeze.shape)
torch.unsqueeze 增加维度
第一个参数:操作的对象
第二个参数:增加维度的位置——>第几个轴
3、torch.view
重构张量,功能同reshape相似,但是 view() 只能操作 tensor,reshape() 可以操作 tensor 和 ndarray。
view() 只能用在 contiguous(连续) 的变量上。如果在 view 之前用了 transpose, permute 等切片处理,需要用 contiguous() 来返回一个 contiguous copy。
pytorch 中的 torch.reshape() 大致相当于 tensor.contiguous().view()
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)