【Python机器学习系列】建立AdaBoost模型预测心脏疾病
ztj100 2024-11-08 15:07 76 浏览 0 评论
这是我的第214篇原创文章。
一、引言
对于表格数据,一套完整的机器学习建模流程如下:
针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高,本文有些步骤跳过了,跳过的步骤将单独出文章总结!同时欢迎大家关注翻看我之前的一些相关文章。
AdaBoost(Adaptive Boosting)是一种集成学习算法,用于构建强大的分类器。它通过组合多个弱分类器(通常是决策树)来构建一个强分类器。每个弱分类器都在前一个分类器的错误样本上进行训练,以便更好地对这些错误样本进行分类。
AdaBoost的基本思想是对训练样本进行加权,将权重较大的样本放在优先训练的位置,从而使得分类器能够更关注分类错误的样本。在每个训练迭代中,AdaBoost根据前一个分类器的性能调整样本的权重,使得下一个分类器更关注分类错误的样本。最终,所有弱分类器的结果会被加权组合,形成最终的强分类器。
AdaBoost的一个关键优点是它能够处理高维度的数据和复杂的分类任务。它在实践中表现出色,并且具有较高的准确性。然而,AdaBoost也对噪声和异常值敏感,因此在使用时需要注意数据质量和异常值的处理。
本文利用scikit-learn(一个常用的机器学习库)实现了基于心脏疾病数据集建立AdaBoost模型对心脏疾病患者进行分类预测的完整过程。
二、实现过程
1、准备数据
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
df:
数据基本信息:
print(df.head())
print(df.info())
print(df.shape)
print(df.columns)
print(df.dtypes)
cat_cols = [col for col in df.columns if df[col].dtype == "object"] # 类别型变量名
num_cols = [col for col in df.columns if df[col].dtype != "object"] # 数值型变量名
2、提取特征变量和目标变量
target = 'target'
features = df.columns.drop(target)
print(data["target"].value_counts()) # 顺便查看一下样本是否平衡
3、数据集划分
# df = shuffle(df)
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)
4、归一化
# 归一化
mm1 = MinMaxScaler() # 特征进行归一化
X_train_m = mm1.fit_transform(X_train)
mm2 = MinMaxScaler() # 标签进行归一化
y_train_m = mm2.fit_transform(y_train)
5、模型的构建与训练
# 模型的构建与训练
model = AdaBoostClassifier(n_estimators=100, random_state=0)
model.fit(X_train_m, y_train_m)
AdaBoostClassifier:
class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50,
learning_rate=1.0, algorithm=’SAMME.R’,
random_state=None)
参数解读:
- base_estimator:可选参数,默认为DecisionTreeClassifier。理论上可以选择任何一个分类或者回归学习器,不过需要支持样本权重。
- algorithm:可选参数,默认为SAMME.R。scikit-learn实现了两种Adaboost分类算法,SAMME和SAMME.R。两者的主要区别是弱学习器权重的度量,SAMME使用对样本集分类效果作为弱学习器权重,而SAMME.R使用了对样本集分类的预测概率大小来作为弱学习器权重。
- n_estimators:整数型,可选参数,默认为50。弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是50。
- learning_rate:浮点型,可选参数,默认为1.0。每个弱学习器的权重缩减系数,取值范围为0到1。
- random_state:整数型,可选参数,默认为None。如果RandomState的实例,random_state是随机数生成器; 如果None,则随机数生成器是由np.random使用的RandomState实例。
6、模型的推理与评价
# 模型推理与评价
# 对测试集特征进行相同规则mm1的归一化处理,然后输入到模型进行预测
X_test_m = mm1.transform(X_test) #注意fit_transform() 和 transform()的区别
y_pred_m = model.predict(X_test_m)
y_scores = model.predict_proba(X_test_m)
y_pred = mm2.inverse_transform(np.reshape(y_pred_m, (-1, 1)))
acc = accuracy_score(y_test, y_pred) # 准确率acc
cm = confusion_matrix(y_test, y_pred) # 混淆矩阵
cr = classification_report(y_test, y_pred) # 分类报告
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:, 1], pos_label=1) # 计算ROC曲线和AUC值,绘制ROC曲线
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
cm:
cr:
ROC:
作者简介:
读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
原文链接:
相关推荐
- Jquery 详细用法
-
1、jQuery介绍(1)jQuery是什么?是一个js框架,其主要思想是利用jQuery提供的选择器查找要操作的节点,然后将找到的节点封装成一个jQuery对象。封装成jQuery对象的目的有...
- 前端开发79条知识点汇总
-
1.css禁用鼠标事件2.get/post的理解和他们之间的区别http超文本传输协议(HTTP)的设计目的是保证客户机与服务器之间的通信。HTTP的工作方式是客户机与服务器之间的请求-应答协议。...
- js基础面试题92-130道题目
-
92.说说你对作用域链的理解参考答案:作用域链的作用是保证执行环境里有权访问的变量和函数是有序的,作用域链的变量只能向上访问,变量访问到window对象即被终止,作用域链向下访问变量是不被允许的。...
- Web前端必备基础知识点,百万网友:牛逼
-
1、Web中的常见攻击方式1.SQL注入------常见的安全性问题。解决方案:前端页面需要校验用户的输入数据(限制用户输入的类型、范围、格式、长度),不能只靠后端去校验用户数据。一来可以提高后端处理...
- 事件——《JS高级程序设计》
-
一、事件流1.事件流描述的是从页面中接收事件的顺序2.事件冒泡(eventbubble):事件从开始时由最具体的元素(就是嵌套最深的那个节点)开始,逐级向上传播到较为不具体的节点(就是Docu...
- 前端开发中79条不可忽视的知识点汇总
-
过往一些不足的地方,通过博客,好好总结一下。1.css禁用鼠标事件...
- Chrome 开发工具之Network
-
经常会听到比如"为什么我的js代码没执行啊?","我明明发送了请求,为什么反应?","我这个网站怎么加载的这么慢?"这类的问题,那么问题既然存在,就需要去解决它,需要解决它,首先我们得找对导致问题的原...
- 轻量级 React.js 虚拟美化滚动条组件RScroll
-
前几天有给大家分享一个Vue自定义滚动条组件VScroll。今天再分享一个最新开发的ReactPC端模拟滚动条组件RScroll。...
- 一文解读JavaScript事件对象和表单对象
-
前言相信做网站对JavaScript再熟悉不过了,它是一门脚本语言,不同于Python的是,它是一门浏览器脚本语言,而Python则是服务器脚本语言,我们不光要会Python,还要会JavaScrip...
- Python函数参数黑科技:*args与**kwargs深度解析
-
90%的Python程序员不知道,可变参数设计竟能决定函数的灵活性和扩展性!掌握这些技巧,让你的函数适应任何场景!一、函数参数设计的三大进阶技巧...
- 深入理解Python3密码学:详解PyCrypto库加密、解密与数字签名
-
在现代计算领域,信息安全逐渐成为焦点话题。密码学,作为信息保护的关键技术之一,允许我们加密(保密)和解密(解密)数据。...
- 阿里Nacos惊爆安全漏洞,火速升级!(附修复建议)
-
前言好,我是threedr3am,我发现nacos最新版本1.4.1对于User-Agent绕过安全漏洞的serverIdentitykey-value修复机制,依然存在绕过问题,在nacos开启了...
- Python模块:zoneinfo时区支持详解
-
一、知识导图二、知识讲解(一)zoneinfo模块概述...
- Golang开发的一些注意事项(一)
-
1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...
- Python鼠标与键盘自动化指南:从入门到进阶——键盘篇
-
`pynput`是一个用于控制和监控鼠标和键盘的Python库...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)