百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python时序预测系列】SSA优化LSTM实现单变量时间序列预测

ztj100 2024-11-08 15:07 25 浏览 0 评论

这是我的第269篇原创文章。

一、引言

麻雀算法(Sparrow Search Algorithm,SSA)是一种基于麻雀群体行为的算法,它可以用来优化深度学习模型中的参数。在优化LSTM模型时,可以通过麻雀算法来调整LSTM的参数,以提高模型的性能和收敛速度。通过麻雀算法优化LSTM模型参数,可以帮助改善模型的性能和泛化能力,加快模型收敛速度,提高预测准确率。同时,麻雀算法还可以帮助发现更优的参数组合,有效地搜索参数空间,提高模型的泛化性能。下面是一个简单的步骤示例,演示如何使用SSA来优化LSTM的超参数。

二、实现过程

2.1 读取数据集

# 读取数据集
data = pd.read_csv('data.csv')
# 将日期列转换为日期时间类型
data['Month'] = pd.to_datetime(data['Month'])
# 将日期列设置为索引
data.set_index('Month', inplace=True)

data:

2.2 划分数据集

# 拆分数据集为训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()

共144条数据,8:2划分:训练集115,测试集29。

训练集和测试集:

2.3 归一化

# 将数据归一化到 0~1 范围
scaler = MinMaxScaler()
train_data_scaler = scaler.fit_transform(train_data.values.reshape(-1, 1))
test_data_scaler = scaler.transform(test_data.values.reshape(-1, 1))

2.4 构造数据集

# 定义滑动窗口函数
def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i + window_size, 0:data.shape[1]])
        Y.append(data[i + window_size, 0])
    return np.array(X), np.array(Y)
    
# 定义滑动窗口大小
window_size = 1
# 创建滑动窗口数据集
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
X_test, Y_test = create_sliding_windows(test_data_scaler, window_size)
# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1))
X_test = np.reshape(X_test, (X_test.shape[0], window_size, 1))

2.5 建立模型进行预测

class SSA():
    pass

def build_model(X_train, neurons1, neurons2, dropout):
    nb_features = X_train.shape[2]
    input1 = X_train.shape[1]
    model1 = Sequential()
    model1.add(LSTM(
        input_shape=(input1, nb_features),
        units=neurons1,
        return_sequences=True))
    model1.add(Dropout(dropout))
    model1.add(LSTM(
        units=neurons2,
        return_sequences=False))
    model1.add(Dropout(dropout))
    model1.add(Dense(units=1))
    model1.add(Activation("linear"))
    model1.compile(loss='mse', optimizer='Adam', metrics=['mae'])
    return model1
    
UP = [51, 6, 0.055, 9]
DOWN = [50, 5, 0.05, 8]

# 开始优化
ssa = SSA(training, n_dim=4, pop_size=22, max_iter=1, lb=DOWN, ub=UP)
ssa.run()
print('best_params is ', ssa.gbest_x)
print('best_precision is', 1 - ssa.gbest_y)

# 训练模型  使用ssa找到的最好的神经元个数
neurons1 = int(ssa.gbest_x[0])
neurons2 = int(ssa.gbest_x[1])
dropout = ssa.gbest_x[2]
batch_size = int(ssa.gbest_x[3])

model = build_model(X_train, neurons1, neurons2, dropout)
history1 = model.fit(X_train, y_train, epochs=150, batch_size=batch_size, validation_split=0.2, verbose=1,
                     callbacks=[EarlyStopping(monitor='val_loss', patience=9, restore_best_weights=True)])

# 使用 LSTM 模型进行预测
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)
# 反归一化预测结果
train_predictions = scaler.inverse_transform(train_predictions)
test_predictions = scaler.inverse_transform(test_predictions)

best_params:

test_predictions:

2.6 预测效果展示

# 绘制测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(test_data, label='Actual')
plt.plot(list(test_data.index)[-len(test_predictions):], test_predictions, label='Predicted')
plt.xlabel('Month')
plt.ylabel('Passengers')
plt.title('Actual vs Predicted')
plt.legend()
plt.show()

测试集真实值与预测值:

# 绘制原始数据、训练集预测结果和测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(data, label='Actual')
plt.plot(list(train_data.index)[look_back:train_size], train_predictions, label='Training Predictions')
plt.plot(list(test_data.index)[-(len(test_data)-look_back):], test_predictions, label='Testing Predictions')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Actual vs Predicted')
plt.legend()
plt.show()

原始数据、训练集预测结果和测试集预测结果:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python时序预测系列】麻雀算法(SSA)优化LSTM实现单变量时间序列预测(源码)

相关推荐

再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)

在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...

python编程:如何使用python代码绘制出哪些常见的机器学习图像?

专栏推荐...

python创建分类器小结(pytorch分类数据集创建)

简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...

matplotlib——绘制散点图(matplotlib散点图颜色和图例)

绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...

python实现实时绘制数据(python如何绘制)

方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...

简单学Python——matplotlib库3——绘制散点图

前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...

数据分析-相关性分析可视化(相关性分析数据处理)

前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...

免费Python机器学习课程一:线性回归算法

学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...

用Python进行机器学习(2)之逻辑回归

前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂

一、拟合和回归的区别拟合...

推荐2个十分好用的pandas数据探索分析神器

作者:俊欣来源:关于数据分析与可视化...

向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

用Python进行机器学习(11)-主成分分析PCA

我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...

神经网络基础深度解析:从感知机到反向传播

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

Python实现基于机器学习的RFM模型

CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...

取消回复欢迎 发表评论: