百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

支持向量机(SVM)说明及示例(支持向量机有哪些优缺点)

ztj100 2024-11-08 15:06 27 浏览 0 评论


支持向量机(SVM)可以解决支持分类和回归问题,这两个问题的解决都是通过构造函数h来实现的,该函数将输入向量x与输出y进行匹配:y = h(x )

优缺点

优点:该算法可以基于内核对线性和非线性问题的极限进行建模。它对于“过拟合”也非常可行,尤其是在大空间中。

劣势:支持向量机需要大量的内存,由于选择正确的核(kernel)很重要,所以很难调整,而且在相当大的数据集下也无法获得良好的结果。

简要说明

假设我们有6点的数据集,如下所示

你可以看到它们是线性可分的,但问题是有成千上万的直线可以做到这一点

所有这些线均有效,并且可以100%正确的进行分类。但问题是,这些线是有效的,但不是最优的。

如下图所示,它们的原理很简单:它们的目的是使用尽可能“简单”的边界将数据分离到类中,从而使不同数据组之间的距离和它们之间的边界达到最大。这个距离也被称为“margin”,支持向量机因此被称为“wide margin separators”,“支持向量”是最接近边界的数据。

要使用的机器学习数据集

1)进行分类的SVM:我们将使用“ Social Network Ads”机器学习数据集,这是此数据集的链接(https://www.kaggle.com/rakeshrau/social-network-ads)。数据集由5列组成(User ID、Gender、 Age、 Estimated Salary 和 Purchased),共有400行。

2)第二个SVM进行回归:我们将使用“Position Salaries”机器学习数据集,这是此数据集(https://www.kaggle.com/farhanmd29/position-salaries)的链接。数据集由3列组成(Position、 Level、Salary),有10行。

要达到的结果

分类:可视化并识别不同类,并按数据集绘制分界线以进行测试

回归:可视化数据点并绘制回归线,并预测level为4.5和8.5员工的薪水

遵循的步骤

分类

  1. 导入必要的库
  2. 导入数据集
  3. 将数据分为训练集和测试集
  4. 根据需要建立特征缩放
  5. 从SVM库创建用于分类的SVC对象
  6. 拟合数据集(训练集)
  7. 预测结果(测试集)
  8. 评估机器学习模型

回归

  1. 导入必要的Python库
  2. 导入机器学习数据集
  3. 根据需要建立特征缩放
  4. 从SVM库创建用于回归的SVC对象
  5. 拟合数据集
  6. 预测结果

算法实现(分类)

这部分代码进行了数据预处理,特征缩放,将数据划分为训练集和测试集,然后从支持向量机类中声明我们的SVC分类模型以进行拟合和预测

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Fitting classifier to the Training set
from sklearn.svm import SVC
classifier = SVC(random_state=0) # for non-linear model use this parametre kernel='rbf'
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

数据可视化部分的Python代码如下:

# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Classifier (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

结果

我们将使用线性和非线性的核来可视化svc对象的测试集

算法实现(回归)

与上面的SVR模型相类似。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# import and split the data and classes
dataset = pd.read_csv("Position_Salaries.csv")
X = dataset.iloc[:, 1:-1].values
Y = dataset.iloc[:, 2].values


# features scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_Y = StandardScaler()
X = sc_X.fit_transform(X)
Y = sc_Y.fit_transform(np.reshape(Y, (10,1)))

# Fitting Regression modelto the dataset
from sklearn.svm import SVR
regressor = SVR() # add this parametre kernel='rbf'
regressor.fit(X,Y)

# predicts a new result with polyn reg
y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(np.array([[8.5]]))))

# Visualisation the regression result
plt.scatter(x=X, y=Y,color='red')
plt.plot(X, regressor.predict(X), color='green')
plt.title('Truth of Bluff / SVR')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()

结果

我们需要了解SVM有几种类型的核(‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’)。

4.5的预测为130101.64,8.5为303706.02

我们将regressor = SVR()替换为regressor = SVR(kernel='rbf'),然后重新运行程序

而预测这里有115841.63(4.5)和403162.82(8.5)

最后

SVM的限制包括:

  • SVM算法不适用于大型数据集。
  • 当数据集的噪声较大时,支持向量机不能很好地工作。
  • 如果每个数据点的样本数量超过了训练数据样本的数量,SVM将会表现不佳。
  • 由于支持向量分类器通过在分类超平面的上方和下方放置数据点来工作,因此没有概率解释。

相关推荐

Jquery 详细用法

1、jQuery介绍(1)jQuery是什么?是一个js框架,其主要思想是利用jQuery提供的选择器查找要操作的节点,然后将找到的节点封装成一个jQuery对象。封装成jQuery对象的目的有...

前端开发79条知识点汇总

1.css禁用鼠标事件2.get/post的理解和他们之间的区别http超文本传输协议(HTTP)的设计目的是保证客户机与服务器之间的通信。HTTP的工作方式是客户机与服务器之间的请求-应答协议。...

js基础面试题92-130道题目

92.说说你对作用域链的理解参考答案:作用域链的作用是保证执行环境里有权访问的变量和函数是有序的,作用域链的变量只能向上访问,变量访问到window对象即被终止,作用域链向下访问变量是不被允许的。...

Web前端必备基础知识点,百万网友:牛逼

1、Web中的常见攻击方式1.SQL注入------常见的安全性问题。解决方案:前端页面需要校验用户的输入数据(限制用户输入的类型、范围、格式、长度),不能只靠后端去校验用户数据。一来可以提高后端处理...

事件——《JS高级程序设计》

一、事件流1.事件流描述的是从页面中接收事件的顺序2.事件冒泡(eventbubble):事件从开始时由最具体的元素(就是嵌套最深的那个节点)开始,逐级向上传播到较为不具体的节点(就是Docu...

前端开发中79条不可忽视的知识点汇总

过往一些不足的地方,通过博客,好好总结一下。1.css禁用鼠标事件...

Chrome 开发工具之Network

经常会听到比如"为什么我的js代码没执行啊?","我明明发送了请求,为什么反应?","我这个网站怎么加载的这么慢?"这类的问题,那么问题既然存在,就需要去解决它,需要解决它,首先我们得找对导致问题的原...

轻量级 React.js 虚拟美化滚动条组件RScroll

前几天有给大家分享一个Vue自定义滚动条组件VScroll。今天再分享一个最新开发的ReactPC端模拟滚动条组件RScroll。...

一文解读JavaScript事件对象和表单对象

前言相信做网站对JavaScript再熟悉不过了,它是一门脚本语言,不同于Python的是,它是一门浏览器脚本语言,而Python则是服务器脚本语言,我们不光要会Python,还要会JavaScrip...

Python函数参数黑科技:*args与**kwargs深度解析

90%的Python程序员不知道,可变参数设计竟能决定函数的灵活性和扩展性!掌握这些技巧,让你的函数适应任何场景!一、函数参数设计的三大进阶技巧...

深入理解Python3密码学:详解PyCrypto库加密、解密与数字签名

在现代计算领域,信息安全逐渐成为焦点话题。密码学,作为信息保护的关键技术之一,允许我们加密(保密)和解密(解密)数据。...

阿里Nacos惊爆安全漏洞,火速升级!(附修复建议)

前言好,我是threedr3am,我发现nacos最新版本1.4.1对于User-Agent绕过安全漏洞的serverIdentitykey-value修复机制,依然存在绕过问题,在nacos开启了...

Python模块:zoneinfo时区支持详解

一、知识导图二、知识讲解(一)zoneinfo模块概述...

Golang开发的一些注意事项(一)

1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...

Python鼠标与键盘自动化指南:从入门到进阶——键盘篇

`pynput`是一个用于控制和监控鼠标和键盘的Python库...

取消回复欢迎 发表评论: