百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python数据分析系列】全面梳理数组维度转化和堆叠操作(案例)

ztj100 2024-11-08 15:06 20 浏览 0 评论

这是Python数据分析系列原创文章,我的第184篇原创文章。

一、问题

在做数据分析和机器学习任务的时候,经常会遇到数据的重组,这就涉及到关于数组的维度转化和堆叠问题,本文将详细总结数据的堆叠操作方法。希望读者自己能够感悟其中的区别。

二、数组的属性和方法

数据准备

Bash
import numpy as np

X1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
X2 = np.array([[1, 2, 3, 4],
              [5, 6, 7, 8],
              [9, 10, 11, 12]])

2.1 尺寸、形状、长度

Bash
print('元素数量', X2.size)  # 输出数组元素的个数
print('行数', np.size(X2, 0), '列数', np.size(X2, 1)) # 输出行数和列数
print("维度:", X2.shape)   # 输出数组的形状(维度)
print('行数', X2.shape[0], '列数', X2.shape[1])  # 输出行数和列数
print('长度', len(X2))  # 输出数组的长度

输出结果:

2.2 一维数组转二维

X3 = X1.reshape(len(X1), 1)
X4 = np.reshape(X1, (-1, 1))

以上两种方法等价,np.reshape函数可以在不改变数组元素的情况下改变数组的形状,但是需要确保新的形状与原数组的元素数量匹配。

2.3 二维数组转一维

X5 = X2.flatten()

np.flatten方法返回一个展平后的一维数组,其中元素按照原数组的顺序排列。

三、创建数组

3.1 根据一组索引号创建数组

# 索引和数据
l1 = [0, 1, 2]
l2 = [0, 5, 2]
data = [55, 58, 58]
indices = list(zip(l1, l2))
# 确定二维数组的大小
max_index = np.max(indices, axis=0)
rows, cols = max_index[0] + 1, max_index[1] + 1
# 创建初始的二维数组
arr = np.zeros((rows, cols))
# 根据索引和数据填充二维数组
for idx, value in zip(indices, data):
    arr[idx] = value
print(arr)
# 绘制数据的热力图
# ax = sns.heatmap(arr)
# plt.show()

arr如下:arr[0][0]=55;arr[1][5]=55;arr[2][2]=55;

3.2 np.random()随机数生成数组

np.random.seed(0)
data = np.random.rand(10, 12)

np.random.rand()返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。

np.random.randn()返回一个或一组服从标准正态分布的随机样本值。

np.random.seed(0)
data = np.random.randint(2, high=10, size=(2,3))

numpy.random.randint()返回一个随机整型数

np.random.seed(0)
data = np.random.random((3, 4))

np.random.random()返回[0,1)之间的浮点数

三、数组堆叠操作

准备数据

a1 = np.array([1, 3, 4])    # shape (3,)
a2 = np.array([4, 6, 7])    # shape (3,)
a3 = np.array([8, 10, 14])    # shape (3,)
b1 = np.array([[1,2,3],[4,5,6]])  # shape (3, 3)
b2 = np.array([[11,21,31],[7,8,9]])  # shape (3, 3)

3.1 stack()

c1 = np.stack((a1, a2, a3), axis=0)
c2 = np.stack((a1, a2, a3), axis=1)

np.stack是NumPy库中的一个函数,用于沿新的轴将多个数组堆叠在一起。它可以用于在新的维度上将多个数组进行堆叠,从而创建一个更高维度的数组。需要注意的是,堆叠的数组必须具有相同的形状。

以上是在第一个维度上(行)进行堆叠的结果

以上是在第二个维度(列)上进行堆叠的结果

3.2 vstack()

d1 = np.vstack((a1, a2, a3))

np.vstack是NumPy库中的一个函数,用于沿垂直方向(行方向)将多个数组堆叠在一起。它可以将多个数组垂直堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了垂直方向(行方向)以外的其他维度上必须具有相同的形状。

以上是堆叠的结果,沿行方向,列数不变。

3.3 hstack()

e1 = np.hstack((a1, a2, a3))

np.hstack是NumPy库中的一个函数,用于沿水平方向(列方向)将多个数组堆叠在一起。它可以将多个数组水平堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了水平方向(列方向)以外的其他维度上必须具有相同的形状。

以上是堆叠的结果,沿列方向,行数不变。

3.4 dstack()

f1 = np.dstack((a1, a2, a3))

np.dstack是NumPy库中的一个函数,用于沿深度方向(第三维度)将多个数组堆叠在一起。它可以将多个二维数组沿深度方向堆叠成一个更大的三维数组。需要注意的是,堆叠的数组在除了深度方向(第三维度)以外的其他维度上必须具有相同的形状。

3.5 row_stack()

g1 = np.row_stack((a1, a2, a3))

np.row_stack是NumPy库中的一个函数,用于沿行方向将多个数组堆叠在一起。它可以将多个数组按行堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了行方向以外的其他维度上必须具有相同的形状。

以上是堆叠的结果

3.6 column_stack()

h1 = np.column_stack((a1, a2, a3))

np.column_stack是NumPy库中的一个函数,用于沿列方向将多个数组堆叠在一起。它可以将多个数组按列堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了列方向以外的其他维度上必须具有相同的形状。

以上是堆叠的结果

3.7 concatenate()

i1 = np.concatenate((a1, a2, a3), axis=0)
i2 = np.concatenate((b1, b2), axis=1)

np.concatenate是NumPy库中的一个函数,用于沿指定轴将多个数组连接在一起。它可以将多个数组在指定的轴上进行连接,生成一个更大的数组。需要注意的是,连接的数组在除了指定轴以外的其他维度上必须具有相同的形状。

i1结果:

i2结果:

本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注私信作者!

作者简介:

读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

原文链接:

【Python数据分析系列】一文帮你全面梳理数组的维度转化和堆叠操作(案例+源码)

相关推荐

Vue3非兼容变更——函数式组件(vue 兼容)

在Vue2.X中,函数式组件有两个主要应用场景:作为性能优化,因为它们的初始化速度比有状态组件快得多;返回多个根节点。然而在Vue3.X中,有状态组件的性能已经提高到可以忽略不计的程度。此外,有状态组...

利用vue.js进行组件化开发,一学就会(一)

组件原理/组成组件(Component)扩展HTML元素,封装可重用的代码,核心目标是为了可重用性高,减少重复性的开发。组件预先定义好行为的ViewModel类。代码按照template\styl...

Vue3 新趋势:10 个最强 X 操作!(vue.3)

Vue3为前端开发带来了诸多革新,它不仅提升了性能,还提供了...

总结 Vue3 组件管理 12 种高级写法,灵活使用才能提高效率

SFC单文件组件顾名思义,就是一个.vue文件只写一个组件...

前端流行框架Vue3教程:17. _组件数据传递

_组件数据传递我们之前讲解过了组件之间的数据传递,...

前端流行框架Vue3教程:14. 组件传递Props效验

组件传递Props效验Vue组件可以更细致地声明对传入的props的校验要求...

前端流行框架Vue3教程:25. 组件保持存活

25.组件保持存活当使用...

5 个被低估的 Vue3 实战技巧,让你的项目性能提升 300%?

前端圈最近都在卷性能优化和工程化,你还在用老一套的Vue3开发方法?作为摸爬滚打多年的老前端,今天就把私藏的几个Vue3实战技巧分享出来,帮你在开发效率、代码质量和项目性能上实现弯道超车!一、...

绝望!Vue3 组件频繁崩溃?7 个硬核技巧让性能暴涨 400%!

前端的兄弟姐妹们五一假期快乐,谁还没在Vue3项目上栽过跟头?满心欢喜写好的组件,一到实际场景就频频崩溃,页面加载慢得像蜗牛,操作卡顿到让人想砸电脑。用户疯狂吐槽,领导脸色难看,自己改代码改到怀疑...

前端流行框架Vue3教程:15. 组件事件

组件事件在组件的模板表达式中,可以直接使用...

Vue3,看这篇就够了(vue3 从入门到实战)

一、前言最近很多技术网站,讨论的最多的无非就是Vue3了,大多数都是CompositionAPI和基于Proxy的原理分析。但是今天想着跟大家聊聊,Vue3对于一个低代码平台的前端更深层次意味着什么...

前端流行框架Vue3教程:24.动态组件

24.动态组件有些场景会需要在两个组件间来回切换,比如Tab界面...

前端流行框架Vue3教程:12. 组件的注册方式

组件的注册方式一个Vue组件在使用前需要先被“注册”,这样Vue才能在渲染模板时找到其对应的实现。组件注册有两种方式:全局注册和局部注册...

焦虑!Vue3 组件频繁假死?6 个奇招让页面流畅度狂飙 500%!

前端圈的朋友们,谁还没在Vue3项目上踩过性能的坑?满心期待开发出的组件,一到高并发场景就频繁假死,用户反馈页面点不动,产品经理追着问进度,自己调试到心态炸裂!别以为这是个例,不少人在电商大促、数...

前端流行框架Vue3教程:26. 异步组件

根据上节课的代码,我们在切换到B组件的时候,发现并没有网络请求:异步组件:...

取消回复欢迎 发表评论: