免费Python机器学习课程一:线性回归算法
ztj100 2025-06-15 20:41 3 浏览 0 评论
学习线性回归的概念并从头开始在python中开发完整的线性回归算法
最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是,学习基础知识总是一个好主意。这样,您将非常清楚地理解这些概念。在本文中,我将逐步解释线性回归算法。
想法和公式
线性回归使用非常基本的预测思想。公式如下:
Y = C + BX
我们在学校都学过这个公式。提醒您,这是一条直线方程。在此,Y是因变量,B是斜率,C是截距。通常,对于线性回归,它写为:
在这里," h"是假设或预测的因变量,X是输入特征,theta0和theta1是系数。Theta值从头开始随机初始化。然后使用梯度下降,我们将更新theta值以最小化成本函数。这是成本函数和梯度下降的解释。
成本函数和梯度下降
成本函数确定预测与原始因变量的距离。这是公式
任何机器学习算法的想法都是最小化成本函数,以使假设接近于原始因变量。为此,我们需要优化theta值。如果我们分别基于theta0和theta1取成本函数的偏导数,则会得到梯度下降。要更新theta值,我们需要从相应的theta值中减去梯度下降:
经过偏导数后,以上公式将变为:
此处,m是训练数据的数量,而alpha是学习率。我正在谈论一种变量线性回归。这就是为什么我只有两个theta值的原因。如果有很多变量,则每个变量都有theta值。
工作实例
我将要使用的数据集来自安德鲁·伍(Andrew Ng)的Coursera机器学习课程。这是在Python中逐步实现线性回归的过程。
· 导入包和数据集。
import numpy as np
import pandas as pd
df = pd.read_csv('ex1data1.txt', header = None)
df.head()
在此数据集中,列零是输入要素,列1是输出变量或因变量。我们将使用列0使用上面的直线公式预测列1。
2.将第1列与第0列相对应。
输入变量和输出变量之间的关系是线性的。当关系为线性时,线性回归效果最佳。
3.初始化theta值。我正在将theta值初始化为零。但是任何其他值也应该起作用。
theta = [0,0]
4.根据前面讨论的公式定义假设和成本函数。
def hypothesis(theta, X):
return theta[0] + theta[1]*X
def cost_calc(theta, X, y):
return (1/2*m) * np.sum((hypothesis(theta, X) - y)**2)
5.计算训练数据的数量作为DataFrame的长度。然后定义梯度下降函数。在此函数中,我们将更新theta值,直到cost函数达到最小值为止。可能需要任何数量的迭代。在每次迭代中,它将更新theta值,并使用每个更新的theta值来计算成本以跟踪成本。
m = len(df)
def gradient_descent(theta, X, y, epoch, alpha):
cost = []
i = 0
while i < epoch:
hx = hypothesis(theta, X)
theta[0] -= alpha*(sum(hx-y)/m)
theta[1] -= (alpha * np.sum((hx - y) * X))/m
cost.append(cost_calc(theta, X, y))
i += 1
return theta, cost
6.最后,定义预测函数。它将从梯度下降函数获得更新的theta并预测假设或预测的输出变量。
def predict(theta, X, y, epoch, alpha):
theta, cost = gradient_descent(theta, X, y, epoch, alpha)
return hypothesis(theta, X), cost, theta
7.使用预测函数,找到假设,成本和更新的theta值。我选择学习率为0.01,然后将这个算法运行2000个时期或迭代。
y_predict, cost, theta = predict(theta, df[0], df[1], 2000, 0.01)
最终theta值为-3.79和1.18。
8.在同一图中绘制原始y和假设或预测y。
%matplotlib inline
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(df[0], df[1], label = 'Original y')
plt.scatter(df[0], y_predict, label = 'predicted y')
plt.legend(loc = "upper left")
plt.xlabel("input feature")
plt.ylabel("Original and Predicted Output")
plt.show()
假设图是公式中所预期的一条直线,并且该直线正在最佳位置通过。
9.记住,我们在每次迭代中都跟踪成本函数。让我们绘制成本函数。
plt.figure()
plt.scatter(range(0, len(cost)), cost)
plt.show()
如前所述,我们的目的是优化theta值以最小化成本。从该图可以看出,成本从一开始就急剧下降,然后稳定下来。这意味着theta值已按照我们的预期正确优化。
我希望这可以帮到你。这是本文中使用的数据集的链接:
https://github.com/rashida048/Machine-Learning-With-Python/blob/master/ex1data1.txt
(本文由闻数起舞翻译自Rashida Nasrin Sucky的文章《Linear Regression Algorithm from Scratch in Python: Step by Step》,转载请注明出处,原文链接:
https://towardsdatascience.com/basic-linear-regression-algorithm-in-python-for-beginners-c519a808b5f8)
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)