百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂

ztj100 2025-06-15 20:41 38 浏览 0 评论

一、拟合和回归的区别

拟合并不特指某一种方法,指的是对一些数据,按其规律方程化,比如把平面(一元)上一系列的离散点,用一条直线(线性)或光滑的曲线(非线性)连接起来,而其方程化的方法有很多,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,是其中一种最常见的拟合方法,还有指数平滑这样简单一些的方法,或者ARIMA,VAR,等等各种复杂一点的方法。

从离散点的角度看,它们都有靠近某条曲线的趋势,所以这些点都在朝曲线拟合,从曲线的角度看,那些离散点都在向自己靠拢,所以这些点都在回归到曲线。所以拟合表示离散点(可以拓展到高维特征)与某个曲线方程(可以拓展到模型)的偏差小(目标),回归表示如何找到这样的曲线方程或模型(方法

本文主要讲解拟合和回归这两个概念的区别和联系,对回归拟合的方法进行分类与总结,重点介绍了一元回归拟合的几种实现方法,关于多元回归拟合其实就是机器学习中的回归任务建模了,我后期会出案例分析!

二、回归拟合的分类

  • 采用回归的方法,拟合出自变量x和因变量y之间存在的关系(方程或模型):
    • 根据自变量数量,可以分为一元回归和多元回归;
    • 按照方法可以分为统计回归模型和机器学习回归模型;
    • 按照因变量的多少,可分为简单回归分析和多重回归分析;
    • 按照自变量和因变量之间的关系类型,可分为线性回归和非线性回归。

对于简单回归拟合(即只有一个因变量),可以进一步做以下分类:

  • 对于单自变量-----一元回归拟合
    • 一元线性回归拟合:y = ax + b
    • 一元非线性回归拟合:
      • 特征转化:通过应用非线性变换来改变特征的表示形式,比如取X的对数X’ = Ln(X),然后进行一元回归y=aX’
      • 多项式拟合:可以看成一种多元线性拟合,将其看为有n个特征的多元线性拟合, x为一个特征,x的平方为一个特征……
      • 其他函数拟合:指数函数、对数函数拟合等...
      • 机器学习拟合:采样神经网络(隐含层大于1)、树模型等进行拟合
  • 对于多自变量-------多元回归拟合
    • 多元线性回归拟合:y = a1x1 + a2x2 +a3x3 + ...
    • 多元非线性回归拟合(机器学习...)

三、一元线性回归拟合

准备数据

x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])

3.1 法一:np.polyfit

np.polyfit 是 NumPy 库中的一个函数,用于多项式拟合。它可以根据给定的数据点,拟合出一个多项式函数,返回拟合的系数。

a=np.polyfit(x,y,1)#用1次多项式拟合x,y数组
print(a)
b=np.poly1d(a)#拟合完之后用这个函数来生成多项式对象
print(b)
c=b(x)#生成多项式对象之后,就是获取x在这个多项式处的值
plt.scatter(x,y,marker='o',label='original datas')#对原始数据画散点图
plt.plot(x,c,ls='--',c='red',label='fitting with second-degree polynomial')#对拟合之后的数据,也就是x,c数组画图
plt.legend()
plt.show()

a是系数:[ 8.83917084 -15.20371694]

b是方程:8.839 x - 15.2

3.2 法二:sklearn里面的LinearRegression()

# 定义回归模型
reg = LinearRegression()
x = np.array(x).reshape((len(x), 1))
reg.fit(x, y)
print(reg.coef_)
print(reg.intercept_)
plt.plot(x, y, 'b.')
plt.plot(x, reg.predict(x),'r')
plt.show()

将一元视为多元回归的一种特殊情况,即只有一个特征。

系数:reg.coef_:[8.83917084]

截距:reg.intercept_:-15.203716940671903

3.3 法三:curve_fit

curve_fit 是 SciPy 库中的一个函数,用于非线性曲线拟合。它可以根据给定的数据点和一个自定义的模型函数,拟合出最优的参数值,并返回拟合的参数以及协方差矩阵。

# 定义一个一元线性方程,变量一定要放在第一个位置
def func(x, a, b):
    return a * x + b

popt, pcov = curve_fit(func, x, y)
print(popt)  # 参数最佳值
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend()  # 显示label
plt.show()

最佳系数:popt:[ 8.83917082 -15.20371685]

四、一元多项式回归拟合(以2次多项式为例)

准备数据

x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])

4.1 法一:np.polyfit

a=np.polyfit(x,y,2)#用2次多项式拟合x,y数组
print(a)
b=np.poly1d(a)#拟合完之后用这个函数来生成多项式对象
print(b)
c=b(x)#生成多项式对象之后,就是获取x在这个多项式处的值
plt.scatter(x,y,marker='o',label='original datas')#对原始数据画散点图
plt.plot(x,c,ls='--',c='red',label='fitting with second-degree polynomial')#对拟合之后的数据,也就是x,c数组画图
plt.legend()
plt.show()

系数:[ 1.34960956 -3.36567929 5.01148555]

4.2 法二:sklearn里面的LinearRegression()

# 定义多项式回归, degree的值可以调节多项式的特征
poly_reg = PolynomialFeatures(degree=2)
# 特征处理
x = np.array(x).reshape((len(x), 1))
x_poly = poly_reg.fit_transform(x)
print(x_poly)
# 定义回归模型
reg = LinearRegression()
reg.fit(x_poly, y)
print(reg.coef_)
print(reg.intercept_)
plt.plot(x, y, 'b.')
plt.plot(x, reg.predict(x_poly), 'r')
plt.show()

系数:[ 0. -3.36567929 1.34960956]

截距:5.011485554320338

4.3 法三:curve_fit

# 定义一个二次多项式,变量一定要放在第一个位置
def func(x, a, b, c):
    return a * x ** 2 + b*x + c

popt, pcov = curve_fit(func, x, y) 
print(popt)  
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend()  # 显示label
plt.show()

系数:[ 1.34960956 -3.36567929 5.01148555]

五、一元其他函数回归拟合(指数函数为例)

准备数据

x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])

5.1 法:curve_fit

# 自定义一个想拟合的目标函数,变量一定要放在第一个位置
def func(x, a, b):
    return a * np.exp(x * b)

popt, pcov = curve_fit(func, x, y) 
print(popt)  # 即参数最佳值
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend()  # 显示label
plt.show()

系数:[2.47762425 0.41535845]

好了,本篇内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注联系我!

原文链接:

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂它

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

相关推荐

这个 JavaScript Api 已被废弃!请慎用!

在开发过程中,我们可能会不自觉地使用一些已经被标记为废弃的JavaScriptAPI。这些...

JavaScript中10个“过时”的API,你的代码里还在用吗?

JavaScript作为一门不断发展的语言,其API也在持续进化。新的、更安全、更高效的API不断涌现,而一些旧的API则因为各种原因(如安全问题、性能瓶颈、设计缺陷或有了更好的替代品)被标记为“废...

几大开源免费的 JavaScript 富文本编辑器测评

MarkDown编辑器用的时间长了,发现发现富文本编辑器用起来是真的舒服。...

比较好的网页里面的 html 编辑器 推荐

如果您正在寻找嵌入到网页中的HTML编辑器,以便用户可以直接在网页上编辑HTML内容,以下是几个备受推荐的:CKEditor:CKEditor是一个功能强大的、开源的富文本编辑器,可以嵌入到...

Luckysheet 实现excel多人在线协同编辑

前言前些天看到Luckysheet支持协同编辑Excel,正符合我们协同项目的一部分,故而想进一步完善协同文章,但是遇到了一下困难,特此做声明哈,若侵权,请联系我删除文章!若侵犯版权、个人隐私,请联系...

从 Element UI 源码的构建流程来看前端 UI 库设计

作者:前端森林转发链接:https://mp.weixin.qq.com/s/ziDMLDJcvx07aM6xoEyWHQ引言...

手把手教你如何用 Decorator 装饰你的 Typescript?「实践」

作者:Nealyang转发连接:https://mp.weixin.qq.com/s/PFgc8xD7gT40-9qXNTpk7A...

推荐五个优秀的富文本编辑器

富文本编辑器是一种可嵌入浏览器网页中,所见即所得的文本编辑器。对于许多从事前端开发的小伙伴来说并不算陌生,它的应用场景非常广泛,平时发个评论、写篇博客文章等都能见到它的身影。...

基于vue + element的后台管理系统解决方案

作者:林鑫转发链接:https://github.com/lin-xin前言该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统(WebManagementSystem)开发。基于v...

开源富文本编辑器Quill 2.0重磅发布

开源富文本编辑器Quill正式发布2.0版本。官方TypeScript声明...

Python之Web开发框架学习 Django-表单处理

在Django中创建表单实际上类似于创建模型。同样,我们只需要从Django类继承,则类属性将是表单字段。让我们在myapp文件夹中添加一个forms.py文件以包含我们的应用程序表单。我们将创建一个...

Django测试入门:打造坚实代码基础的钥匙

这一篇说一下django框架的自动化测试,...

Django ORM vs SQLAlchemy:到底谁更香?从入门到上头的选择指南

阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。...

超详细的Django 框架介绍,它来了!

时光荏苒,一晃小编的Tornado框架系列也结束了。这个框架虽然没有之前的FastAPI高流量,但是,它也是小编的心血呀。总共16篇博文,从入门到进阶,包含了框架的方方面面。虽然小编有些方面介绍得不是...

20《Nginx 入门教程》使用 Nginx 部署 Python 项目

今天的目标是完成一个PythonWeb项目的线上部署,我们使用最新的Django项目搭建一个简易的Web工程,然后基于Nginx服务部署该PythonWeb项目。1.前期准备...

取消回复欢迎 发表评论: