【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
ztj100 2025-06-15 20:41 3 浏览 0 评论
一、拟合和回归的区别
拟合并不特指某一种方法,指的是对一些数据,按其规律方程化,比如把平面(一元)上一系列的离散点,用一条直线(线性)或光滑的曲线(非线性)连接起来,而其方程化的方法有很多,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,是其中一种最常见的拟合方法,还有指数平滑这样简单一些的方法,或者ARIMA,VAR,等等各种复杂一点的方法。
从离散点的角度看,它们都有靠近某条曲线的趋势,所以这些点都在朝曲线拟合,从曲线的角度看,那些离散点都在向自己靠拢,所以这些点都在回归到曲线。所以拟合表示离散点(可以拓展到高维特征)与某个曲线方程(可以拓展到模型)的偏差小(目标),回归表示如何找到这样的曲线方程或模型(方法)。
本文主要讲解拟合和回归这两个概念的区别和联系,对回归拟合的方法进行分类与总结,重点介绍了一元回归拟合的几种实现方法,关于多元回归拟合其实就是机器学习中的回归任务建模了,我后期会出案例分析!
二、回归拟合的分类
- 采用回归的方法,拟合出自变量x和因变量y之间存在的关系(方程或模型):
- 根据自变量数量,可以分为一元回归和多元回归;
- 按照方法可以分为统计回归模型和机器学习回归模型;
- 按照因变量的多少,可分为简单回归分析和多重回归分析;
- 按照自变量和因变量之间的关系类型,可分为线性回归和非线性回归。
对于简单回归拟合(即只有一个因变量),可以进一步做以下分类:
- 对于单自变量-----一元回归拟合
- 一元线性回归拟合:y = ax + b
- 一元非线性回归拟合:
- 特征转化:通过应用非线性变换来改变特征的表示形式,比如取X的对数X’ = Ln(X),然后进行一元回归y=aX’
- 多项式拟合:可以看成一种多元线性拟合,将其看为有n个特征的多元线性拟合, x为一个特征,x的平方为一个特征……
- 其他函数拟合:指数函数、对数函数拟合等...
- 机器学习拟合:采样神经网络(隐含层大于1)、树模型等进行拟合
- 对于多自变量-------多元回归拟合
- 多元线性回归拟合:y = a1x1 + a2x2 +a3x3 + ...
- 多元非线性回归拟合(机器学习...)
三、一元线性回归拟合
准备数据
x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])
3.1 法一:np.polyfit
np.polyfit 是 NumPy 库中的一个函数,用于多项式拟合。它可以根据给定的数据点,拟合出一个多项式函数,返回拟合的系数。
a=np.polyfit(x,y,1)#用1次多项式拟合x,y数组
print(a)
b=np.poly1d(a)#拟合完之后用这个函数来生成多项式对象
print(b)
c=b(x)#生成多项式对象之后,就是获取x在这个多项式处的值
plt.scatter(x,y,marker='o',label='original datas')#对原始数据画散点图
plt.plot(x,c,ls='--',c='red',label='fitting with second-degree polynomial')#对拟合之后的数据,也就是x,c数组画图
plt.legend()
plt.show()
a是系数:[ 8.83917084 -15.20371694]
b是方程:8.839 x - 15.2
3.2 法二:sklearn里面的LinearRegression()
# 定义回归模型
reg = LinearRegression()
x = np.array(x).reshape((len(x), 1))
reg.fit(x, y)
print(reg.coef_)
print(reg.intercept_)
plt.plot(x, y, 'b.')
plt.plot(x, reg.predict(x),'r')
plt.show()
将一元视为多元回归的一种特殊情况,即只有一个特征。
系数:reg.coef_:[8.83917084]
截距:reg.intercept_:-15.203716940671903
3.3 法三:curve_fit
curve_fit 是 SciPy 库中的一个函数,用于非线性曲线拟合。它可以根据给定的数据点和一个自定义的模型函数,拟合出最优的参数值,并返回拟合的参数以及协方差矩阵。
# 定义一个一元线性方程,变量一定要放在第一个位置
def func(x, a, b):
return a * x + b
popt, pcov = curve_fit(func, x, y)
print(popt) # 参数最佳值
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend() # 显示label
plt.show()
最佳系数:popt:[ 8.83917082 -15.20371685]
四、一元多项式回归拟合(以2次多项式为例)
准备数据
x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])
4.1 法一:np.polyfit
a=np.polyfit(x,y,2)#用2次多项式拟合x,y数组
print(a)
b=np.poly1d(a)#拟合完之后用这个函数来生成多项式对象
print(b)
c=b(x)#生成多项式对象之后,就是获取x在这个多项式处的值
plt.scatter(x,y,marker='o',label='original datas')#对原始数据画散点图
plt.plot(x,c,ls='--',c='red',label='fitting with second-degree polynomial')#对拟合之后的数据,也就是x,c数组画图
plt.legend()
plt.show()
系数:[ 1.34960956 -3.36567929 5.01148555]
4.2 法二:sklearn里面的LinearRegression()
# 定义多项式回归, degree的值可以调节多项式的特征
poly_reg = PolynomialFeatures(degree=2)
# 特征处理
x = np.array(x).reshape((len(x), 1))
x_poly = poly_reg.fit_transform(x)
print(x_poly)
# 定义回归模型
reg = LinearRegression()
reg.fit(x_poly, y)
print(reg.coef_)
print(reg.intercept_)
plt.plot(x, y, 'b.')
plt.plot(x, reg.predict(x_poly), 'r')
plt.show()
系数:[ 0. -3.36567929 1.34960956]
截距:5.011485554320338
4.3 法三:curve_fit
# 定义一个二次多项式,变量一定要放在第一个位置
def func(x, a, b, c):
return a * x ** 2 + b*x + c
popt, pcov = curve_fit(func, x, y)
print(popt)
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend() # 显示label
plt.show()
系数:[ 1.34960956 -3.36567929 5.01148555]
五、一元其他函数回归拟合(指数函数为例)
准备数据
x=np.array([1,2,3,4,5,6.5,7,8])
y=np.array([1,4,9,13,30,25,49,70])
5.1 法:curve_fit
# 自定义一个想拟合的目标函数,变量一定要放在第一个位置
def func(x, a, b):
return a * np.exp(x * b)
popt, pcov = curve_fit(func, x, y)
print(popt) # 即参数最佳值
y2 = func(x, popt[0], popt[1])
plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend() # 显示label
plt.show()
系数:[2.47762425 0.41535845]
好了,本篇内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注联系我!
原文链接:
【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂它
作者简介:
读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)