Redisson实现Redis分布式锁(使用redis做分布式锁)
ztj100 2024-11-04 15:16 27 浏览 0 评论
Redis几种架构
Redis发展到现在,几种常见的部署架构有:
- 单机模式;
- 主从模式;
- 哨兵模式;
- 集群模式;
我们首先基于这些架构讲解Redisson普通分布式锁实现,需要注意的是,只有充分了解普通分布式锁是如何实现的,才能更好的了解Redlock分布式锁的实现,因为Redlock分布式锁的实现完全基于普通分布式锁。
普通分布式锁
Redis普通分布式锁原理这个大家基本上都了解,本文不打算再过多的介绍,上一篇文章《Redlock:Redis分布式锁最牛逼的实现》也讲的很细,并且也说到了几个重要的注意点。如果你对Redis普通的分布式锁还有一些疑问,可以再回顾一下这篇文章。
接下来直接show you the code,毕竟 talk is cheap。
- redisson版本
本次测试选择redisson 2.14.1版本。
单机模式
源码如下:
// 构造redisson实现分布式锁必要的Config
Config config = new Config();
config.useSingleServer().setAddress("redis://172.29.1.180:5379").setPassword("a123456").setDatabase(0);
// 构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
// 设置锁定资源名称
RLock disLock = redissonClient.getLock("DISLOCK");
boolean isLock;
try {
//尝试获取分布式锁
isLock = disLock.tryLock(500, 15000, TimeUnit.MILLISECONDS);
if (isLock) {
//TODO if get lock success, do something;
Thread.sleep(15000);
}
} catch (Exception e) {
} finally {
// 无论如何, 最后都要解锁
disLock.unlock();
}
通过代码可知,经过Redisson的封装,实现Redis分布式锁非常方便,我们再看一下Redis中的value是啥,和前文分析一样,hash结构,key就是资源名称,field就是UUID+threadId,value就是重入值,在分布式锁时,这个值为1(Redisson还可以实现重入锁,那么这个值就取决于重入次数了):
172.29.1.180:5379> hgetall DISLOCK
1) "01a6d806-d282-4715-9bec-f51b9aa98110:1"
2) "1"
哨兵模式
即sentinel模式,实现代码和单机模式几乎一样,唯一的不同就是Config的构造:
Config config = new Config();
config.useSentinelServers().addSentinelAddress(
"redis://172.29.3.245:26378","redis://172.29.3.245:26379", "redis://172.29.3.245:26380")
.setMasterName("mymaster")
.setPassword("a123456").setDatabase(0);
集群模式
集群模式构造Config如下:
Config config = new Config();
config.useClusterServers().addNodeAddress(
"redis://172.29.3.245:6375","redis://172.29.3.245:6376", "redis://172.29.3.245:6377",
"redis://172.29.3.245:6378","redis://172.29.3.245:6379", "redis://172.29.3.245:6380")
.setPassword("a123456").setScanInterval(5000);
总结
普通分布式实现非常简单,无论是那种架构,向Redis通过EVAL命令执行LUA脚本即可。
Redlock分布式锁
那么Redlock分布式锁如何实现呢?以单机模式Redis架构为例,直接看实现代码:
Config config1 = new Config();
config1.useSingleServer().setAddress("redis://172.29.1.180:5378")
.setPassword("a123456").setDatabase(0);
RedissonClient redissonClient1 = Redisson.create(config1);
Config config2 = new Config();
config2.useSingleServer().setAddress("redis://172.29.1.180:5379")
.setPassword("a123456").setDatabase(0);
RedissonClient redissonClient2 = Redisson.create(config2);
Config config3 = new Config();
config3.useSingleServer().setAddress("redis://172.29.1.180:5380")
.setPassword("a123456").setDatabase(0);
RedissonClient redissonClient3 = Redisson.create(config3);
String resourceName = "REDLOCK";
RLock lock1 = redissonClient1.getLock(resourceName);
RLock lock2 = redissonClient2.getLock(resourceName);
RLock lock3 = redissonClient3.getLock(resourceName);
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
boolean isLock;
try {
isLock = redLock.tryLock(500, 30000, TimeUnit.MILLISECONDS);
System.out.println("isLock = "+isLock);
if (isLock) {
//TODO if get lock success, do something;
Thread.sleep(30000);
}
} catch (Exception e) {
} finally {
// 无论如何, 最后都要解锁
System.out.println("");
redLock.unlock();
}
最核心的变化就是RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);,因为我这里是以三个节点为例。
那么如果是哨兵模式呢?需要搭建3个,或者5个sentinel模式集群(具体多少个,取决于你)。
那么如果是集群模式呢?需要搭建3个,或者5个cluster模式集群(具体多少个,取决于你)。
实现原理
既然核心变化是使用了RedissonRedLock,那么我们看一下它的源码有什么不同。这个类是RedissonMultiLock的子类,所以调用tryLock方法时,事实上调用了RedissonMultiLock的tryLock方法,精简源码如下:
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
// 实现要点之允许加锁失败节点限制(N-(N/2+1))
int failedLocksLimit = failedLocksLimit();
List<RLock> acquiredLocks = new ArrayList<RLock>(locks.size());
// 实现要点之遍历所有节点通过EVAL命令执行lua加锁
for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {
RLock lock = iterator.next();
boolean lockAcquired;
try {
// 对节点尝试加锁
lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);
} catch (RedisConnectionClosedException|RedisResponseTimeoutException e) {
// 如果抛出这类异常,为了防止加锁成功,但是响应失败,需要解锁
unlockInner(Arrays.asList(lock));
lockAcquired = false;
} catch (Exception e) {
// 抛出异常表示获取锁失败
lockAcquired = false;
}
if (lockAcquired) {
// 成功获取锁集合
acquiredLocks.add(lock);
} else {
// 如果达到了允许加锁失败节点限制,那么break,即此次Redlock加锁失败
if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {
break;
}
}
}
return true;
}
很明显,这段源码就是上一篇文章《Redlock:Redis分布式锁最牛逼的实现》提到的Redlock算法的完全实现。
以sentinel模式架构为例,如下图所示,有sentinel-1,sentinel-2,sentinel-3总计3个sentinel模式集群,如果要获取分布式锁,那么需要向这3个sentinel集群通过EVAL命令执行LUA脚本,需要3/2+1=2,即至少2个sentinel集群响应成功,才算成功的以Redlock算法获取到分布式锁:
Redlock分布式锁
问题合集
image.png
根据上面实现原理的分析,这位同学应该是对Redlock算法实现有一点点误解,假设我们用5个节点实现Redlock算法的分布式锁。那么要么是5个redis单实例,要么是5个sentinel集群,要么是5个cluster集群。而不是一个有5个主节点的cluster集群,然后向每个节点通过EVAL命令执行LUA脚本尝试获取分布式锁,如上图所示。
- 失效时间如何设置
这个问题的场景是,假设设置失效时间10秒,如果由于某些原因导致10秒还没执行完任务,这时候锁自动失效,导致其他线程也会拿到分布式锁。
这确实是Redis分布式最大的问题,不管是普通分布式锁,还是Redlock算法分布式锁,都没有解决这个问题。也有一些文章提出了对失效时间续租,即延长失效时间,很明显这又提升了分布式锁的复杂度。另外就笔者了解,没有现成的框架有实现,如果有哪位知道,可以告诉我,万分感谢。
- redis分布式锁的高可用
关于Redis分布式锁的安全性问题,在分布式系统专家Martin Kleppmann和Redis的作者antirez之间已经发生过一场争论。有兴趣的同学,搜索"基于Redis的分布式锁到底安全吗"就能得到你想要的答案,需要注意的是,有上下两篇(这应该就是传说中的神仙打架吧,哈)。
- zookeeper or redis
没有绝对的好坏,只有更适合自己的业务。就性能而言,redis很明显优于zookeeper;就分布式锁实现的健壮性而言,zookeeper很明显优于redis。如何选择,取决于你的业务!
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)