百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

利用Python进行数据分组/数据透视表

ztj100 2025-06-04 08:56 27 浏览 0 评论

1.数据分组

源数据表如下所示:

1.1 分组键是列名

分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。

  • 按照一列进行分组
import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
print(df)
#按照客户分类对数据进行分组
print (df.groupby("客户分类").count())

根据客户分类对所有数据进行分组,然后对分组以后的数据分别进行计数运算,最后进行合并,如下:

  • 按照多列进行分组
import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
print(df)
#按照多列对数据进行分组
print (df.groupby(["客户分类","区域"]).count())

执行结果如图:

1.2 分组键是Series

把DataFrame的其中一列取出来就是一个Series,比如df["客户分类"]就是一个Series。

分组键是列名与分组键是Series的唯一区别就是,给groupby()方法传入了什么,其他都一样。可以按照一个或多个Series进行分组,分组以后的汇总计算也是完全一样的,也支持对分组以后的某些列进行汇总计算。

#按单个Series进行分组
print (df.groupby(df["客户分类"]).count())
#按单个Series进行分组
print (df.groupby(df["客户分类"],df["区域"]).count())

1.3 神奇的aggregate方法

aggregate的第一个神奇之处在于,一次可以使用多种汇总方式,比如下面的例子先对分组后的所有列做计数汇总运算,然后对所有列做求和汇总运算。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
#对数据进行计数汇总与求和汇总运算
print(df.groupby("客户分类").aggregate(["count","sum"]))

aggregate的第二个神奇之处在于,可以针对不同的列做不同的汇总运算,比如,想看不同类别的用户有多少,那么对用户ID进行计数;想看不同类别的用户在7/8/9的销量,则需要对销量进行求和。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))

print(df.groupby("客户分类").aggregate({"用户ID":"count","7月销量":"sum","8月销量":"sum","9月销量":"sum"}))

1.4 对分组后的结果重置索引

为了便于对分组结果进行进一步处理和分析,需要把非标准形式转化为标准的DataFrame形式,利用的方法就是重置索引reset_index()方法。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))

print(df.groupby("客户分类").count())
#利用reset_index()重置索引
print(df.groupby("客户分类").count().reset_index())

2.数据透视表

Python中的数据透视表用到的是pivot_table()方法,其全部参数如下:

pd.pivot_table(data,values=None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna==True,margins_name='All')

#data:表示要做数据透视表的整个表
#values:对应excel中值那个框
#index:对应excel中行那个框
#columns:对应excel中列那个框
#aggfunc:表示对values的计算类型
#fill_value:表示对空值的填充值
#margins:表示是否显示合计列
#dropna:表示是否删除缺失,如果为真时,则把一整行全作为缺失值删除
#margins_name:表示合计列的列名

实例,客户分类作为index,区域作为columns,用户ID作为values,对values执行count运算:

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
#客户分类作为index,区域作为columns,用户ID作为values,对values执行count运算
print(pd.pivot_table(df,values="用户ID",index="客户分类",columns="区域",aggfunc='count',margins=True))

执行结果如下:

可用margins_name对合计列名称"All"进行修改。

可用fill_value对缺失值进行填充。

可用reset_index()对透视表结果进行重置索引。

相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: