百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

利用Python进行数据分组/数据透视表

ztj100 2025-06-04 08:56 6 浏览 0 评论

1.数据分组

源数据表如下所示:

1.1 分组键是列名

分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。

  • 按照一列进行分组
import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
print(df)
#按照客户分类对数据进行分组
print (df.groupby("客户分类").count())

根据客户分类对所有数据进行分组,然后对分组以后的数据分别进行计数运算,最后进行合并,如下:

  • 按照多列进行分组
import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
print(df)
#按照多列对数据进行分组
print (df.groupby(["客户分类","区域"]).count())

执行结果如图:

1.2 分组键是Series

把DataFrame的其中一列取出来就是一个Series,比如df["客户分类"]就是一个Series。

分组键是列名与分组键是Series的唯一区别就是,给groupby()方法传入了什么,其他都一样。可以按照一个或多个Series进行分组,分组以后的汇总计算也是完全一样的,也支持对分组以后的某些列进行汇总计算。

#按单个Series进行分组
print (df.groupby(df["客户分类"]).count())
#按单个Series进行分组
print (df.groupby(df["客户分类"],df["区域"]).count())

1.3 神奇的aggregate方法

aggregate的第一个神奇之处在于,一次可以使用多种汇总方式,比如下面的例子先对分组后的所有列做计数汇总运算,然后对所有列做求和汇总运算。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
#对数据进行计数汇总与求和汇总运算
print(df.groupby("客户分类").aggregate(["count","sum"]))

aggregate的第二个神奇之处在于,可以针对不同的列做不同的汇总运算,比如,想看不同类别的用户有多少,那么对用户ID进行计数;想看不同类别的用户在7/8/9的销量,则需要对销量进行求和。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))

print(df.groupby("客户分类").aggregate({"用户ID":"count","7月销量":"sum","8月销量":"sum","9月销量":"sum"}))

1.4 对分组后的结果重置索引

为了便于对分组结果进行进一步处理和分析,需要把非标准形式转化为标准的DataFrame形式,利用的方法就是重置索引reset_index()方法。

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))

print(df.groupby("客户分类").count())
#利用reset_index()重置索引
print(df.groupby("客户分类").count().reset_index())

2.数据透视表

Python中的数据透视表用到的是pivot_table()方法,其全部参数如下:

pd.pivot_table(data,values=None,index=None,columns=None,aggfunc='mean',fill_value=None,margins=False,dropna==True,margins_name='All')

#data:表示要做数据透视表的整个表
#values:对应excel中值那个框
#index:对应excel中行那个框
#columns:对应excel中列那个框
#aggfunc:表示对values的计算类型
#fill_value:表示对空值的填充值
#margins:表示是否显示合计列
#dropna:表示是否删除缺失,如果为真时,则把一整行全作为缺失值删除
#margins_name:表示合计列的列名

实例,客户分类作为index,区域作为columns,用户ID作为values,对values执行count运算:

import pandas as pd

df = pd.DataFrame(pd.read_excel("Client_Data.xlsx"))
#客户分类作为index,区域作为columns,用户ID作为values,对values执行count运算
print(pd.pivot_table(df,values="用户ID",index="客户分类",columns="区域",aggfunc='count',margins=True))

执行结果如下:

可用margins_name对合计列名称"All"进行修改。

可用fill_value对缺失值进行填充。

可用reset_index()对透视表结果进行重置索引。

相关推荐

拒绝躺平,如何使用AOP的环绕通知实现分布式锁

如何在分布式环境下,像用synchronized关键字那样使用分布式锁。比如开发一个注解,叫@DistributionLock,作用于一个方法函数上,每次调方法前加锁,调完之后自动释放锁。可以利用Sp...

「解锁新姿势」 兄dei,你代码需要优化了

前言在我们平常开发过程中,由于项目时间紧张,代码可以用就好,往往会忽视代码的质量问题。甚至有些复制粘贴过来,不加以整理规范。往往导致项目后期难以维护,更别说后续接手项目的人。所以啊,我们要编写出优雅的...

消息队列核心面试点讲解(消息队列面试题)

Rocketmq消息不丢失一、前言RocketMQ可以理解成一个特殊的存储系统,这个存储系统特殊之处数据是一般只会被使用一次,这种情况下,如何保证这个被消费一次的消息不丢失是非常重要的。本文将分析Ro...

秒杀系统—4.第二版升级优化的技术文档二

大纲7.秒杀系统的秒杀活动服务实现...

SpringBoot JPA动态查询与Specification详解:从基础到高级实战

一、JPA动态查询概述1.1什么是动态查询动态查询是指根据运行时条件构建的查询,与静态查询(如@Query注解或命名查询)相对。在业务系统中,80%的查询需求都是动态的,例如电商系统中的商品筛选、订...

Java常用工具类技术文档(java常用工具类技术文档有哪些)

一、概述Java工具类(UtilityClasses)是封装了通用功能的静态方法集合,能够简化代码、提高开发效率。本文整理Java原生及常用第三方库(如ApacheCommons、GoogleG...

Guava 之Joiner 拼接字符串和Map(字符串拼接join的用法)

Guave是一个强大的的工具集合,今天给大家介绍一下,常用的拼接字符串的方法,当然JDK也有方便的拼接字符串的方式,本文主要介绍guava的,可以对比使用基本的拼接的话可以如下操作...

SpringBoot怎么整合Redis,监听Key过期事件?

一、修改Redis配置文件1、在Redis的安装目录2、找到redis.windows.conf文件,搜索“notify-keyspace-events”...

如何使用Python将多个excel文件数据快速汇总?

在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...

利用Pandas高效处理百万级数据集,速度提升10倍的秘密武器

处理大规模数据集,尤其是百万级别的数据量,对效率的要求非常高。使用Pandas时,可以通过一些策略和技巧显著提高数据处理的速度。以下是一些关键的方法,帮助你使用Pandas高效地处理大型数据集,从而实...

Python进阶-Day 25: 数据分析基础

目标:掌握Pandas和NumPy的基本操作,学习如何分析CSV数据集并生成报告。课程内容...

Pandas 入门教程 - 第五课: 高级数据操作

在前几节课中,我们学习了如何使用Pandas进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。高级索引和切片...

原来这才是Pandas!(原来这才是薯片真正的吃法)

听到一些人说,Pandas语法太乱、太杂了,根本记不住。...

python(pandas + numpy)数据分析的基础

数据NaN值排查,统计,排序...

利用Python进行数据分组/数据透视表

1.数据分组源数据表如下所示:1.1分组键是列名分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。按照一列进行分组...

取消回复欢迎 发表评论: