人生苦短,自学 python——pandas 的分组操作
ztj100 2025-06-04 08:56 5 浏览 0 评论
四类基本操作之分组
索引、分组、变形、合并
案例数据说明,作为资深科密,我将使用kaggle上老大职业生涯的投篮数据为例,理论结合案例说明分组运算的基本原理和一些基本操作。老大职业生涯数据统计,其中有5000条数据为空,是当时比赛用来预测的结果数据,因此,该数据与老科真实数据之间会有一定的差异。
此外,数据中没有给出每场的得分,但是可以根据shot_type和shot_made_flag两个字段得到得分数据,具体数据处理过程不是本文重点,这里就不再详述了,数据说明:
一、分组运算的原理
1、SAC过程
SAC指的是分组操作中的split-apply-combine过程其中,split指基于某一些规则,将数据拆成若干组,apply是指对每一组独立地使用函数,combine指将每一组的结果组合成某一类数据结构
2、 apply过程
整合(Aggregation)——分组计算统计量(如求均值、求每组元素个数)
变换(Transformation)——分组对每个单元的数据进行操作(如元素标准化)
过滤(Filtration)——按照某些规则筛选出一些组(如选出组内某一指标小于50的组)
综合问题——前面提及的三种问题的混合
二、groupby函数
1、分组原理及结果
可根据一列、多列、多级索引的level以及与数据长度相同的数组列表等进行等值分组,经过groupby后会生成一个groupby对象,该对象本身不会返回任何数据,只有当相应的方法被调用才会起作用.
比如将老科的比赛数据按照常规赛和季后赛进行分组
可以看出数据被分成了两组0:常规赛,1:季后赛,将原来一个整体的dataframe分为两个dataframe
2、组对象的常用方法调用
get_group()获得组结果,
size()和ngroups():组容量与组数,
head()和first():对分组对象使用head函数,返回的是每个组的前几行,而不是数据集前几行;first显示的是以分组为索引的每组的第一个分组信息
3、分组依据
分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组。根据奇偶行分组:
df.groupby(lambda x:'奇数行' if not df.index.get_loc(x)%2==1 else '偶数行').groups
从原理上说,我们可以看到利用函数时,传入的对象就是索引
4、groupby的[]操作
可以用[]选出groupby对象的某个或者某几个列,比如对比科比常规赛和季后赛投篮得分比。
kobe.groupby(["playoffs","game_id"])["points"].sum().groupby(level=0).mean()
playoffs
0 15.76791
1 16.43578
Name: points, dtype: float64
这里因为数据缺失得到的结果与老科的实际数据有偏差。
三、聚合、过滤和变换
1、聚合(Aggregate)
(1)常用聚合函数
所谓聚合就是把一堆数,变成一个标量,因此
mean/sum/size/count/std/var/sem/describe/first/last/nth/min/max都是聚合函数
计算科比生涯对阵对手得分情况
(2)多聚合函数
利用元组进行重命名
(3)多列应用聚合函数
单列多聚合函数,结果列名为聚合函数名,多列应用聚合函数,结果列名为原列名,可以使用rename函数进行重命名。
(4)自定义聚合函数
(5)带参数的聚合函数
2、过滤(Filteration)
filter函数是用来筛选某些组的(务必记住结果是组的全体)全组值均为true的组,因此传入的值应当是布尔标量
3、变换(Transformation)
transform函数中传入的对象是组内的列,并且返回值需要与列长完全一致,如果返回了标量值,那么组内的所有元素会被广播为这个值。
四、apply函数
当函数不是聚合、过滤、变换,而是更普通的函数时,就要用到apply函数,返回值可以为标量、列表,数据框等形式
1、函数应用
(1)标量返回值
此时的功能可视为agg聚合函数
(2)列表返回值
(3)数据框返回值
2、用apply同时统计多个指标
相关推荐
- 拒绝躺平,如何使用AOP的环绕通知实现分布式锁
-
如何在分布式环境下,像用synchronized关键字那样使用分布式锁。比如开发一个注解,叫@DistributionLock,作用于一个方法函数上,每次调方法前加锁,调完之后自动释放锁。可以利用Sp...
- 「解锁新姿势」 兄dei,你代码需要优化了
-
前言在我们平常开发过程中,由于项目时间紧张,代码可以用就好,往往会忽视代码的质量问题。甚至有些复制粘贴过来,不加以整理规范。往往导致项目后期难以维护,更别说后续接手项目的人。所以啊,我们要编写出优雅的...
- 消息队列核心面试点讲解(消息队列面试题)
-
Rocketmq消息不丢失一、前言RocketMQ可以理解成一个特殊的存储系统,这个存储系统特殊之处数据是一般只会被使用一次,这种情况下,如何保证这个被消费一次的消息不丢失是非常重要的。本文将分析Ro...
- 秒杀系统—4.第二版升级优化的技术文档二
-
大纲7.秒杀系统的秒杀活动服务实现...
- SpringBoot JPA动态查询与Specification详解:从基础到高级实战
-
一、JPA动态查询概述1.1什么是动态查询动态查询是指根据运行时条件构建的查询,与静态查询(如@Query注解或命名查询)相对。在业务系统中,80%的查询需求都是动态的,例如电商系统中的商品筛选、订...
- Java常用工具类技术文档(java常用工具类技术文档有哪些)
-
一、概述Java工具类(UtilityClasses)是封装了通用功能的静态方法集合,能够简化代码、提高开发效率。本文整理Java原生及常用第三方库(如ApacheCommons、GoogleG...
- Guava 之Joiner 拼接字符串和Map(字符串拼接join的用法)
-
Guave是一个强大的的工具集合,今天给大家介绍一下,常用的拼接字符串的方法,当然JDK也有方便的拼接字符串的方式,本文主要介绍guava的,可以对比使用基本的拼接的话可以如下操作...
- SpringBoot怎么整合Redis,监听Key过期事件?
-
一、修改Redis配置文件1、在Redis的安装目录2、找到redis.windows.conf文件,搜索“notify-keyspace-events”...
- 如何使用Python将多个excel文件数据快速汇总?
-
在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...
- 利用Pandas高效处理百万级数据集,速度提升10倍的秘密武器
-
处理大规模数据集,尤其是百万级别的数据量,对效率的要求非常高。使用Pandas时,可以通过一些策略和技巧显著提高数据处理的速度。以下是一些关键的方法,帮助你使用Pandas高效地处理大型数据集,从而实...
- Python进阶-Day 25: 数据分析基础
-
目标:掌握Pandas和NumPy的基本操作,学习如何分析CSV数据集并生成报告。课程内容...
- Pandas 入门教程 - 第五课: 高级数据操作
-
在前几节课中,我们学习了如何使用Pandas进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。高级索引和切片...
- 原来这才是Pandas!(原来这才是薯片真正的吃法)
-
听到一些人说,Pandas语法太乱、太杂了,根本记不住。...
- python(pandas + numpy)数据分析的基础
-
数据NaN值排查,统计,排序...
- 利用Python进行数据分组/数据透视表
-
1.数据分组源数据表如下所示:1.1分组键是列名分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。按照一列进行分组...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)