pandas入门教程 - 第十课: pandas的组操作
ztj100 2025-06-04 08:55 6 浏览 0 评论
Pandas 组操作简介
Pandas 的组操作(Group By)是数据处理中的核心功能之一,它允许我们对数据进行分组并对每个组进行操作,从而实现复杂的数据分析和处理任务。
分组操作的基础
在 Pandas 中,分组操作通常通过 groupby 方法实现。这个方法可以根据一个或多个列对数据进行分组。
单一列分组
当我们只想根据一列进行分组时,可以直接传递该列作为参数给 groupby 方法。
import pandas as pd
# 创建一个示例 DataFrame
data = {
'Category': ['A', 'A', 'B', 'B', 'C', 'C'],
'Value': [10, 20, 30, 40, 30, 20]
}
df = pd.DataFrame(data)
# 根据 'Category' 列进行分组
grouped = df.groupby('Category')
# 查看分组后的结果
print(grouped)
多列分组
如果我们想根据多个列进行分组,可以将这些列作为列表传递给 groupby 方法。
# 根据 'Category' 和 'Year' 列进行分组
grouped_multi = df.groupby(['Category', 'Value'])
# 查看分组后的结果
print(grouped_multi)
分组后的操作
分组操作完成后,我们可以对每个组进行各种操作,如聚合、转换和排序等。
聚合函数
聚合函数可以对数据进行汇总计算,如求和、平均值、最大值和最小值等。
# 计算每个类别的总和
total_per_category = grouped['Value'].sum()
# 计算每个类别的平均值
mean_per_category = grouped['Value'].mean()
# 查看结果
print(total_per_category)
print(mean_per_category)
转换函数
转换函数可以对数据进行转换操作,如计数、排序等。
# 计算每个类别的记录数量
count_per_category = grouped['Value'].count()
# 查看结果
print(count_per_category)
过滤和排序
我们还可以对分组后的数据进行过滤和排序操作。
# 过滤出 'Category' 为 'A' 的数据
filtered_category_a = grouped['Value'][grouped['Category'] == 'A']
# 对 'Category' 为 'A' 的数据进行降序排序
sorted_category_a = filtered_category_a.sort_values(ascending=False)
# 查看结果
print(sorted_category_a)
拆分、应用和组合(Split-Apply-Combine)
Split-Apply-Combine 是 Pandas 的一种强大的数据处理范式,它可以帮助我们更有效地进行数据分析。
拆分(Split)
拆分操作是指将数据集按照某些键分成多个子集。在 Pandas 中,这通常通过 groupby 方法实现。
# 根据 'Category' 列进行分组
grouped = df.groupby('Category')
# 拆分数据集
grouped_list = list(grouped)
# 查看拆分后的分组
for category, group in grouped_list:
print(category)
print(group)
A
Category Value
0 A 10
1 A 20
B
Category Value
2 B 30
3 B 40
C
Category Value
4 C 30
5 C 20
应用(Apply)
应用操作是指对每个分组应用一个函数,并收集结果。在 Pandas 中,这通常通过 apply 方法实现。
# 对每个分组应用自定义函数
def custom_function(group):
return group['Value'].sum()
# 应用自定义函数
result = grouped.apply(custom_function)
# 查看结果
print(result)
Category
A 30
B 70
C 50
dtype: int64
组合(Combine)
组合操作是指将多个子集数据合并成一个整体。在 Pandas 中,这通常通过 concat 方法实现。
# 假设我们有多个分组的数据,并将它们存储在列表中
grouped_list = [grouped_1, grouped_2, grouped_3]
# 使用 concat 方法将它们合并
combined_df = pd.concat(grouped_list)
# 查看合并后的数据框
print(combined_df)
实践案例
在本节中,我们将通过一个实际案例来练习分组操作。我们将使用一个包含销售数据的 DataFrame,学习如何进行数据的分组和聚合分析,以了解不同产品类别的销售情况。
数据导入
首先,我们需要导入销售数据。
import pandas as pd
# 加载销售数据
df = pd.read_csv('sales_data.csv')
# 查看数据框的前几行
print(df.head())
Product Sales
0 A 83.612440
1 B 83.743698
2 C 88.536823
3 D 88.427858
4 E 81.554607
分组和聚合分析
接下来,我们将根据产品类别对销售数据进行分组,并计算每个类别的总销售额和平均销售额。
# 根据产品类别进行分组
grouped_by_product = df.groupby('Product')
# 计算总销售额
total_sales_by_product = grouped_by_product['Sales'].sum()
# 计算平均销售额
average_sales_by_product = grouped_by_product['Sales'].mean()
# 查看结果
print(total_sales_by_product)
print(average_sales_by_product)
Product Sales
0 A 83.612440
1 B 83.743698
2 C 88.536823
3 D 88.427858
4 E 81.554607
Product
A 522.415076
B 437.234533
C 446.066535
D 782.328957
E 81.554607
Name: Sales, dtype: float64
Product
A 87.069179
B 87.446907
C 89.213307
D 86.925440
E 81.554607
Name: Sales, dtype: float64
可视化分析
为了更直观地理解销售数据,我们可以使用 matplotlib 库来绘制图表。
import matplotlib.pyplot as plt
# 绘制总销售额的柱状图
plt.bar(total_sales_by_product.index, total_sales_by_product.values, color='blue')
plt.xlabel('Product')
plt.ylabel('Total Sales')
plt.title('Total Sales by Product Category')
plt.xticks(rotation=90) # 旋转 x 轴刻度标签以提高可读性
plt.show()
# 绘制平均销售额的折线图
plt.plot(average_sales_by_product.index, average_sales_by_product.values, color='red')
plt.xlabel('Product')
plt.ylabel('Average Sales')
plt.title('Average Sales by Product Category')
plt.xticks(rotation=90) # 旋转 x 轴刻度标签以提高可读性
plt.show()
总结
在本课程中,我们学习了 Pandas 的组操作功能,包括如何使用 groupby 方法对数据进行分组,如何使用聚合函数对数据进行汇总计算,以及如何使用拆分-应用-组合范式对数据进行复杂的分析。通过实践案例,我们学会了如何应用这些知识来解决实际问题,如分析销售数据。掌握这些技能将极大地提高我们在数据处理和分析方面的能力。
相关推荐
- 拒绝躺平,如何使用AOP的环绕通知实现分布式锁
-
如何在分布式环境下,像用synchronized关键字那样使用分布式锁。比如开发一个注解,叫@DistributionLock,作用于一个方法函数上,每次调方法前加锁,调完之后自动释放锁。可以利用Sp...
- 「解锁新姿势」 兄dei,你代码需要优化了
-
前言在我们平常开发过程中,由于项目时间紧张,代码可以用就好,往往会忽视代码的质量问题。甚至有些复制粘贴过来,不加以整理规范。往往导致项目后期难以维护,更别说后续接手项目的人。所以啊,我们要编写出优雅的...
- 消息队列核心面试点讲解(消息队列面试题)
-
Rocketmq消息不丢失一、前言RocketMQ可以理解成一个特殊的存储系统,这个存储系统特殊之处数据是一般只会被使用一次,这种情况下,如何保证这个被消费一次的消息不丢失是非常重要的。本文将分析Ro...
- 秒杀系统—4.第二版升级优化的技术文档二
-
大纲7.秒杀系统的秒杀活动服务实现...
- SpringBoot JPA动态查询与Specification详解:从基础到高级实战
-
一、JPA动态查询概述1.1什么是动态查询动态查询是指根据运行时条件构建的查询,与静态查询(如@Query注解或命名查询)相对。在业务系统中,80%的查询需求都是动态的,例如电商系统中的商品筛选、订...
- Java常用工具类技术文档(java常用工具类技术文档有哪些)
-
一、概述Java工具类(UtilityClasses)是封装了通用功能的静态方法集合,能够简化代码、提高开发效率。本文整理Java原生及常用第三方库(如ApacheCommons、GoogleG...
- Guava 之Joiner 拼接字符串和Map(字符串拼接join的用法)
-
Guave是一个强大的的工具集合,今天给大家介绍一下,常用的拼接字符串的方法,当然JDK也有方便的拼接字符串的方式,本文主要介绍guava的,可以对比使用基本的拼接的话可以如下操作...
- SpringBoot怎么整合Redis,监听Key过期事件?
-
一、修改Redis配置文件1、在Redis的安装目录2、找到redis.windows.conf文件,搜索“notify-keyspace-events”...
- 如何使用Python将多个excel文件数据快速汇总?
-
在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...
- 利用Pandas高效处理百万级数据集,速度提升10倍的秘密武器
-
处理大规模数据集,尤其是百万级别的数据量,对效率的要求非常高。使用Pandas时,可以通过一些策略和技巧显著提高数据处理的速度。以下是一些关键的方法,帮助你使用Pandas高效地处理大型数据集,从而实...
- Python进阶-Day 25: 数据分析基础
-
目标:掌握Pandas和NumPy的基本操作,学习如何分析CSV数据集并生成报告。课程内容...
- Pandas 入门教程 - 第五课: 高级数据操作
-
在前几节课中,我们学习了如何使用Pandas进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。高级索引和切片...
- 原来这才是Pandas!(原来这才是薯片真正的吃法)
-
听到一些人说,Pandas语法太乱、太杂了,根本记不住。...
- python(pandas + numpy)数据分析的基础
-
数据NaN值排查,统计,排序...
- 利用Python进行数据分组/数据透视表
-
1.数据分组源数据表如下所示:1.1分组键是列名分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。按照一列进行分组...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)