百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

从0到1建立一张评分卡之可视化分析

ztj100 2025-06-04 08:55 19 浏览 0 评论

 上一篇文章介绍了如何进行数据预处理,接下来介绍如何进行探索性数据分析。探索性数据分析又叫EDA,即Exploratory Data Analysis。其实数据预处理也属于EDA的一部分,EDA的目标就是快速描述一份数据集,以及对数据进行处理并可视化数据分布。只有了解数据之后,才能分析数据。今天主要介绍可视化数据分布的内容。

 首先将变量分为数值型变量和类别型变量,分别进行可视化分析。

num_features = ['int_rate_clean', 'emp_length_clean', 'annual_inc', 'dti', 'delinq_2yrs', 'earliest_cr_to_app',
                'inq_last_6mths', \
                'mths_since_last_record_clean', 'mths_since_last_delinq_clean', 'open_acc', 'pub_rec', 'total_acc',
                'limit_income', 'earliest_cr_to_app']

cat_features = ['home_ownership', 'verification_status', 'desc_clean', 'purpose', 'zip_code', 'addr_state']
feature_list=num_features+cat_features

 一共有14个数值变量和6个类别变量。先看一下类别型变量的分布图。

# 类别型变量的分布
def plot_cate_var(df,col_list,hspace=0.4,wspace=0.4,plt_size=None,plt_num=None,x=None,y=None):
    plt.figure(figsize=plt_size)
    plt.subplots_adjust(hspace=hspace,wspace=wspace)
    plt.rcParams['font.sans-serif']=['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    for i,col in zip(range(1,plt_num+1,1),col_list):
        plt.subplot(x,y,i)
        plt.title(col)
        sns.countplot(data=df,y=col)
        plt.ylabel('')
    return plt.show()

 从上图可以看到每个类别型变量的大致分布情况。其中purpose、zip_code和addr_state这三个类别型变量的取值过多。对这类变量一般有这些处理办法:

  • 降基处理。即将占比较小的类别进行合并。
  • 用bad_rate编码后划入数值型变量,进行分箱。

 对于purpose变量,由于类别数不是很多,可以尝试进行降基;对于zip_code和addr_state,由于变量过多,所以进行bad_rate编码。

 再看一下数值型变量的分布情况。

def plot_num_col(df,col_list,hspace=0.4,wspace=0.4,plt_type=None,plt_size=None,plt_num=None,x=None,y=None):

    plt.figure(figsize=plt_size)
    plt.subplots_adjust(hspace=hspace,wspace=wspace)
    if plt_type=='hist':
        for i,col in zip(range(1,plt_num+1,1),col_list):
            plt.subplot(x,y,i)
            plt.title(col)
            sns.distplot(df[col].dropna())
            plt.xlabel('')
    return plt.show()

 数值型变量的分布用到了seaborn中的distplot画图,对应的还有一个kedplot画图方法。可以直观地看出每个变量的分布状态。 然后结合违约率,再对变量进行一下可视化分析。先对类别型变量进行可视化分析。

# 类别型变量的违约率分析
def plot_default_cate(df,col_list,target,hspace=0.4,wspace=0.4,plt_size=None,plt_num=None,x=None,y=None):
    all_bad = df[target].sum()
    total = df[target].count()
    all_default_rate = all_bad*1.0/total
    
    plt.figure(figsize=plt_size)
    plt.subplots_adjust(hspace=hspace,wspace=wspace)
    plt.rcParams['font.sans-serif']=['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    for i,col in zip(range(1,plt_num+1,1),col_list):
        d1 = df.groupby(col)
        d2 = pd.DataFrame()
        d2['total'] = d1[target].count()
        d2['bad'] = d1[target].sum()
        d2['default_rate'] = d2['bad']/d2['total']
        d2 = d2.reset_index()
        plt.subplot(x,y,i)
        plt.title(col)
        plt.axvline(x=all_default_rate)
        sns.barplot(data=d2,y=col,x='default_rate')
        plt.ylabel('')
    return plt.show()

 这张图将每个变量取值的违约率和该变量的违约率画在一张图上进行对比,可以直观地看出哪些变量的取值违约率较高。比如homeownership变量的other取值、purpose变量的small_business取值。  同样看下数值型变量的违约率分布图。需要对数值型变量进行等深分箱。

# 数值型变量的违约率分析
def plot_default_num(df,col_list,target,hspace=0.4,wspace=0.4,q=None,plt_size=None,plt_num=None,x=None,y=None):
    all_bad = df[target].sum()
    total = df[target].count()
    all_default_rate = all_bad*1.0/total 
    
    plt.figure(figsize=plt_size)
    plt.subplots_adjust(hspace=hspace,wspace=wspace)
    for i,col in zip(range(1,plt_num+1,1),col_list):
        bucket = pd.qcut(df[col],q=q,duplicates='drop')
        d1 = df.groupby(bucket)
        d2 = pd.DataFrame()
        d2['total'] = d1[target].count()
        d2['bad'] = d1[target].sum()
        d2['default_rate'] = d2['bad']/d2['total']
        d2 = d2.reset_index()
        plt.subplot(x,y,i)
        plt.title(col)
        plt.axhline(y=all_default_rate)
        sns.pointplot(data=d2,x=col,y='default_rate',color='hotpink')
        plt.xticks(rotation=60)
        plt.xlabel('')
    return plt.show()

 对数值型变量进行等频分箱,观察每一箱的违约率占比以及单个变量的违约率占比情况。可以看到delinq_2yrs、pub_rec只有一箱。结合数值型变量的分布图发现这些变量都有一个取值的数量极多,导致在进行等频分箱的时候由于频数过大所以只有一箱。此外,大部分变量在进行等频分箱后的坏样本率是呈现单调趋势的。 总结:可视化分析有助于让数据分析更清晰明了,可以帮助理解数据,并且以清晰、简洁的图标展示出分析结果,这是非常重要的。

【作者】:Labryant

【原创公众号】:风控猎人

【简介】:某创业公司策略分析师,积极上进,努力提升。乾坤未定,你我都是黑马。

【转载说明】:转载请说明出处,谢谢合作!~

相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: