百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

面试官:使用int类型做加减操作,是线程安全吗

ztj100 2024-12-20 19:51 261 浏览 0 评论

大家好,我是小黑,一个在互联网苟且偷生的农民工。

在开始讲今天的内容之前,先问一个问题,使用int类型做加减操作是不是线程安全的呢?比如 i++ ,++i,i=i+1这样的操作在并发情况下是否会有问题?

我们通过运行代码来看一下。

public class AtomicDemo {
    public static void main(String[] args) throws InterruptedException {
        Data data = new Data();
        Thread a = new Thread(() -> {
            for (int i = 0; i < 100000; i++) {
                System.out.println(Thread.currentThread().getName()+"_"+data.increment());
            }
        }, "A");
        Thread b = new Thread(() -> {
            for (int i = 0; i < 100000; i++) {
                System.out.println(Thread.currentThread().getName()+"_"+data.increment());
            }
        }, "B");
        a.start();
        b.start();
        // 等待A,B线程执行完毕
        a.join();
        b.join();
        System.out.println(data.getI());
    }
}

class Data {
    private volatile int i = 0;
    public int increment() {
        i++;
        return i;
    }
    public int getI() {
        return i;
    }
}

以上代码比较简单,通过A,B两个线程同时对Data对象中的i执行++操作,各自执行100000次,最后输出,如果说i++操作时线程安全的,那么最后输出的结果应该是200000,但是我们运行代码会看到如下结果:

我们发现最后输出的并不是200000,而是199982,如果多执行几次的话,这个结果会发生变化,并且大多数情况下不会是200000。这主要是因为int类型的++操作不是原子的,i++同等于i=i+1,也就是加1这一步和对i重新赋值这一步不是同时完成的,不具备原子性,所以我们得出结论int类型的操作不是线程安全的。

在很多实际场景中都需要对一个数据进行并发操作,比如电商的秒杀活动中,对一个商品数量的扣减,那么我们想保证安全性应该怎么做呢?

首先我们可以想到的就是使用synchronized关键字对increment()这个方法加锁,这样就能保证每次只有一个线程能访问。

但是之前的文章中我们有讲到synchronized是一个重量级的悲观锁,我们的业务场景的并发可能是一段时间内的,多数情况下可能并不会有很多竞争,所以有没有更好的处理方式呢,答案就是通过AtomicInteger

AtomicInteger

AtomicInteger是java.util.concurrent.atomic包中的一个类。我们看官方文档对于这个包的描述,说它是支持单个变量上的无锁线程安全编程的工具包,好像和我们期望的一样,在不加锁的情况下达到线程安全。

我们来修改一下上面例子的代码。

class Data {
    private volatile AtomicInteger i = new AtomicInteger(0);

    public int increment() {
        return i.incrementAndGet();
    }

    public int getI() {
        return i.get();
    }
}

很简单,将原来的int修改为AtomicInteger,在执行increment()方法进行增加操作时,调用incrementAndGet()方法就可以了。同样我们运行代码,会发现,不管运行多少次,代码最后执行的结果都是一样的,200000。所以我们说AtomicInteger是线程安全的。除了incrementAndGet()方法以外,还有很多其他的操作,比如decrementAndGet(),getAndIncrement(),getAndDecrement(),getAndAdd(int delta),addAndGet(int delta)等等,实际上就是对i++,++i,i=i+n,i+=n这些操作的原子实现。

除了AtomicInteger以外,java.util.concurrent.atomic包中还有一些其他类型,比如AtomicBoolean,AtomicLong等。

实现原理

那么AtomicInteger是如何实现在不使用synchronized的情况下保证原子性的呢?我们来看一下源码。

public class AtomicInteger extends Number implements java.io.Serializable {
 
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    // value在内存中的地址偏移值
    private static final long valueOffset;
    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
    // value为volatile的保证内存可见性
    private volatile int value;

    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
   
}
public final class Unsafe {
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            // 获取volatile的Int,保证拿到的值是最新的
            var5 = this.getIntVolatile(var1, var2);
            // compareAndSwapInt 比较并交换 native方法
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
        return var5;
    }
}

通过源码我们看到在incrementAndGet()方法中调用了Unsafe类的getAndAddInt方法,在这个方法内部对value进行compareAndSwapInt操作。通过这个方法名我们就可以看出是比较并交换,也就是我们之前提到过的CAS。也就是在执行赋值操作时,先看一下当前值是不是我加之前的值,如果不是,那我就重新加一次之后再进行比较,是一个循环的过程,这个过程也称作自旋

CAS这种处理方式虽然很高效地解决了原子操作,但是它仍然存在三个问题,在实际开发中一定要注意,结合自己的实际业务场景使用。

ABA问题

什么是ABA问题呢,通俗理解,就是你大爷还是你大爷,你大妈已经不是你大妈了~

什么意思呢?就是当线程1取到A之后,有另一个线程2把A变成了B,又变成了A,当线程1再修改完值进行CAS比较时,发现值还是A,和自己取到的一样,就直接更新了,但是在这个过程中,这个A中间是发生过变化的。就好比一个小偷,偷了别人家钱然后再还回来,还是原来的钱吗?虽然你的钱没变,但是这个小偷已经触犯了法律,而你自己还不知道。

为了解决这个问题,atomic包中提供了一个类,我们看下是如何解决的。

public static void main(String[] args) throws InterruptedException {
    AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
    new Thread(() -> {
        try {
            int stamp = ref.getStamp();
            String reference = ref.getReference();
            System.out.println("线程1拿到的值:" + reference + " stamp:" + stamp);
            // sleep 2秒模拟线程切换到2
            TimeUnit.SECONDS.sleep(2);
            boolean success = ref.compareAndSet(reference, "C", stamp, stamp + 1);
            System.out.println(Thread.currentThread().getName() + " " + success);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }, "线程1").start();

    new Thread(() -> {
        // 先改为B
        int stamp = ref.getStamp();
        String reference = ref.getReference();
        System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp);
        ref.compareAndSet(reference, "B", stamp, stamp + 1);
        // 再改回A
        stamp = ref.getStamp();
        reference = ref.getReference();
        System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp);
        ref.compareAndSet(reference, "A", ref.getStamp(), stamp + 1);
    }, "线程2").start();
}

我们可以看到AtomicStampedReference的compareAndSet()方法有4个参数:

  1. expectedReference:表示期望的引用值
  2. newReference:表示要修改后的新引用值
  3. expectedStamp:表示期望的戳(版本号)
  4. newStamp:表示修改后新的戳(版本号)

什么意思呢?就是在修改时不光比较值是不是和获取到的一样,还要比较版本号。这样的话,每次操作时都对版本号加1,那么就算值从A改为B再改回A,但是版本号从0改成了1又改成了2,并没有变回0,就可以避免ABA问题的发生。

循环时间变长

在并发非常大的情况下,使用CAS可能会存在一些线程一直循环修改不成功,导致循环时间变长,会给CPU带来很大的执行开销。并且由于AtomicReference中的引用是volatile的,为了保证内存可见性,需要保证缓存一致性,通过总线传输数据,当有大量的CAS循环时,会产生总线风暴

只能保证一个变量的原子操作

CAS的第三个问题就是AtomicReference中只能存放一个变量,如果需要保证多个变量操作的原子性,是做不到的。对于这种情况只能使用synchronized或者juc包中的Lock工具。

小结

简单做个小结,使用int类型在并发场景下存在线程安全问题,可以用AtomicInteger来保证原子性操作,Atomic是通过CAS做到无锁线程安全的。但是CAS有三个问题,第一ABA问题,可以通过AtomicStampedReference解决;第二竞争激烈情况下循环时间会变长,会产生总线风暴;第三只能保证一个变量的原子操作。

具体业务场景中是使用synchronized,Lock等锁工具还是使用Atomic的CAS无锁操作,还是要结合场景考虑。


好的,今天的内容就到这里,我们下期见。

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: