百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

NumPy 数组操作:从入门到精通

ztj100 2025-01-16 21:40 22 浏览 0 评论

NumPy 数组操作:从入门到精通

引言

随着大数据时代的到来,如何高效地存储、处理大量数据成为了一个亟待解决的问题。传统的Python列表虽然灵活,但在面对大规模数据集时显得力不从心。NumPy正是在这种背景下应运而生,它提供了一种高效的数据结构——数组(Array),能够以更低的空间开销存储相同数量的数据,并且支持向量化运算,极大地提升了数据处理速度。无论是进行科学计算、数据分析还是机器学习模型训练,NumPy都是不可或缺的工具之一。

基础语法介绍

数组创建

  • numpy.array(): 最常用的数组创建方式,可以将列表或其他序列转换为数组。
  • numpy.zeros(),numpy.ones(),numpy.empty(): 创建特定形状的数组,分别初始化为0、1或未初始化值。
  • numpy.arange(),numpy.linspace(),numpy.logspace(): 生成等差数列、等比数列或对数等比数列。
import numpy as np

# 从列表创建数组
a = np.array([1, 2, 3])
print(a)  # 输出: [1 2 3]

# 创建零数组
b = np.zeros((2, 3))
print(b)
# 输出:
# [[0. 0. 0.]
#  [0. 0. 0.]]

# 创建等差数列
c = np.arange(1, 10, 2)
print(c)  # 输出: [1 3 5 7 9]

数组索引与切片

  • 单一元素访问:arr[index]
  • 多维数组索引:arr[row, column]
  • 切片操作:arr[start:end:step]
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr[0, 1])  # 输出: 2
print(arr[1, :])  # 输出: [4 5 6]

数组运算

  • 算术运算:加(+), 减(-), 乘(*), 除(/), 指数(**), 取模(%)
  • 布尔运算:与(&), 或(|), 非(~)
  • 广播机制:允许不同形状的数组之间进行运算
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

print(x + y)  # 输出: [5 7 9]
print(x * y)  # 输出: [ 4 10 18]

基础实例

假设我们需要对一个包含温度记录的数组进行处理,将其从摄氏度转换为华氏度。

celsius_temps = np.array([-20, -15, 0, 5, 10, 15, 20])
fahrenheit_temps = celsius_temps * (9 / 5) + 32
print(fahrenheit_temps)
# 输出: [-4.  5. 32. 41. 50. 59. 68.]

进阶实例

接下来,我们尝试使用NumPy处理一个稍微复杂些的问题:给定两个不同长度的数组,如何找到它们之间的交集?

a = np.array([1, 2, 3, 4, 5])
b = np.array([4, 5, 6, 7, 8])

intersect = np.intersect1d(a, b)
print(intersect)  # 输出: [4 5]

此外,NumPy还提供了丰富的函数来处理数组的排序、统计分析等功能,例如np.sort()np.mean()np.median()等,可以帮助我们更好地理解数据分布特征。

实战案例

在图像处理领域,NumPy经常被用来读取、编辑图像文件。下面是一个简单的例子,演示如何利用NumPy读取一张图片,并将其转换为灰度图。

from PIL import Image
import numpy as np

img = Image.open('example.jpg')
img_array = np.array(img)

gray_img_array = np.dot(img_array[...,:3], [0.299, 0.587, 0.114]).astype(np.uint8)
gray_img = Image.fromarray(gray_img_array)
gray_img.save('gray_example.jpg')

通过上述代码,我们首先使用PIL库打开图片文件,然后将其转换为NumPy数组形式。接着,利用矩阵乘法计算每个像素点的灰度值,并最终保存为新的图像文件。

扩展讨论

除了上述提到的基础知识外,NumPy还有许多高级功能等待着大家去发现,比如随机数生成、线性代数运算、傅里叶变换等。掌握这些技能将使你在处理更复杂数据时游刃有余。同时,NumPy与SciPy、Pandas等其他科学计算库有着紧密的联系,共同构成了Python生态系统中不可或缺的一部分

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: