百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

NumPy 数组操作:从入门到精通

ztj100 2025-01-16 21:40 15 浏览 0 评论

NumPy 数组操作:从入门到精通

引言

随着大数据时代的到来,如何高效地存储、处理大量数据成为了一个亟待解决的问题。传统的Python列表虽然灵活,但在面对大规模数据集时显得力不从心。NumPy正是在这种背景下应运而生,它提供了一种高效的数据结构——数组(Array),能够以更低的空间开销存储相同数量的数据,并且支持向量化运算,极大地提升了数据处理速度。无论是进行科学计算、数据分析还是机器学习模型训练,NumPy都是不可或缺的工具之一。

基础语法介绍

数组创建

  • numpy.array(): 最常用的数组创建方式,可以将列表或其他序列转换为数组。
  • numpy.zeros(),numpy.ones(),numpy.empty(): 创建特定形状的数组,分别初始化为0、1或未初始化值。
  • numpy.arange(),numpy.linspace(),numpy.logspace(): 生成等差数列、等比数列或对数等比数列。
import numpy as np

# 从列表创建数组
a = np.array([1, 2, 3])
print(a)  # 输出: [1 2 3]

# 创建零数组
b = np.zeros((2, 3))
print(b)
# 输出:
# [[0. 0. 0.]
#  [0. 0. 0.]]

# 创建等差数列
c = np.arange(1, 10, 2)
print(c)  # 输出: [1 3 5 7 9]

数组索引与切片

  • 单一元素访问:arr[index]
  • 多维数组索引:arr[row, column]
  • 切片操作:arr[start:end:step]
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr[0, 1])  # 输出: 2
print(arr[1, :])  # 输出: [4 5 6]

数组运算

  • 算术运算:加(+), 减(-), 乘(*), 除(/), 指数(**), 取模(%)
  • 布尔运算:与(&), 或(|), 非(~)
  • 广播机制:允许不同形状的数组之间进行运算
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

print(x + y)  # 输出: [5 7 9]
print(x * y)  # 输出: [ 4 10 18]

基础实例

假设我们需要对一个包含温度记录的数组进行处理,将其从摄氏度转换为华氏度。

celsius_temps = np.array([-20, -15, 0, 5, 10, 15, 20])
fahrenheit_temps = celsius_temps * (9 / 5) + 32
print(fahrenheit_temps)
# 输出: [-4.  5. 32. 41. 50. 59. 68.]

进阶实例

接下来,我们尝试使用NumPy处理一个稍微复杂些的问题:给定两个不同长度的数组,如何找到它们之间的交集?

a = np.array([1, 2, 3, 4, 5])
b = np.array([4, 5, 6, 7, 8])

intersect = np.intersect1d(a, b)
print(intersect)  # 输出: [4 5]

此外,NumPy还提供了丰富的函数来处理数组的排序、统计分析等功能,例如np.sort()np.mean()np.median()等,可以帮助我们更好地理解数据分布特征。

实战案例

在图像处理领域,NumPy经常被用来读取、编辑图像文件。下面是一个简单的例子,演示如何利用NumPy读取一张图片,并将其转换为灰度图。

from PIL import Image
import numpy as np

img = Image.open('example.jpg')
img_array = np.array(img)

gray_img_array = np.dot(img_array[...,:3], [0.299, 0.587, 0.114]).astype(np.uint8)
gray_img = Image.fromarray(gray_img_array)
gray_img.save('gray_example.jpg')

通过上述代码,我们首先使用PIL库打开图片文件,然后将其转换为NumPy数组形式。接着,利用矩阵乘法计算每个像素点的灰度值,并最终保存为新的图像文件。

扩展讨论

除了上述提到的基础知识外,NumPy还有许多高级功能等待着大家去发现,比如随机数生成、线性代数运算、傅里叶变换等。掌握这些技能将使你在处理更复杂数据时游刃有余。同时,NumPy与SciPy、Pandas等其他科学计算库有着紧密的联系,共同构成了Python生态系统中不可或缺的一部分

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: