百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

NumPy 学习 第一篇:ndarray 的创建和形状操纵

ztj100 2025-01-16 21:40 46 浏览 0 评论

NumPy是Python中用于科学计算的基础软件包,提供了多维数据组对象,用于对数据进行快速的计算,NumPy包中最核心的类型是ndarray,封装了python原生的相同数据类型的 n 维数组,定义了一个执行矢量算术运算的n维数组,无需编写循环结构,就能对整个数组进行批量运算。通常情况下,导入NumPy,设置别名为np。

import numpy as np 

Python原生数组是Array类型,ndarray和原生数组(Array)之间有几个非常明显的特征:

  • ndarray对象在创建时有固定的大小,而原生数组对象可以动态增长,更改ndarray的大小将创建一个新数组并删除原始数组。
  • ndarray对象中的元素类型是相同的,在内存中的大小相同。
  • ndarry有助于对大量数据进行高级数学运算和其他类型的运算。

一,创建ndarray

ndarray是N-Dimension-Array的简称,该对象是一个快速而灵活的大数据集容器,该容器中存储的元素的数据类型都是相同的。

创建数组通常有:

  • 从其他Python结构(例如,列表,元组)转换
  • numpy原生数组的创建(例如,arange、ones、zeros等)

1,把Python 中array_like对象转换为Numpy数组

在Python中排列成array-like结构的数值数据可以通过使用array()函数转换为数组,最明显的例子是列表和元组。

a1 = np.array([1,2,3,4,5])  #1row
a2 = np.array([[1,2,3,4,5]
         ,[6,7,8,9,10]])# 2row * 5col 

通过array()函数,使用列表创建的是一维数组,使用嵌套的列表创建的是多维数组。

2,创建Numpy原生数组

通过arange()函数创建一维数组,数组的元素是一个序列,默认值start=0,不包括stop,step=1。

numpy.arange([start, ]stop, [step, ]dtype=None)

numpy.arange()的用法示例:

a = np.arange(10) #default start=0, end=10(exclude 10),step=1
# [0 1 2 3 4 5 6 7 8 9]
a1 = np.arange(5,10) # start=5, end=10(exclude=10),step=1
# [5 6 7 8 9]
a2 = np.arange(5,20,2) # start=5, end=20(exclude 20),step=2
#[ 5  7  9 11 13 15 17 19]

可以使用reshape()函数重塑ndarray数组的shape,把12个元素的一维数组转换为3行4列的二维数组:

>>> np.arange(12).reshape(3,4)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

3,数组可以转换为列表

ndarray对象的tolist()函数可以把一个数组对象转化为list列表:

>>> np.arange(12).reshape(3,4).tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

二,ndarray的属性

数组对象的属性主要有:

  • dtype:描述数组元素的类型
  • shape:以tuple表示的数组形状
  • ndim:数组的维度
  • size:数组中元素的个数

1,dtype对象

dtype是一个特殊的对象,它表示数组元素的类型。NumPy定义的跟平台无关的数据类型:

  • 整数有符号系列:np.int8,np.int16,np.int32,np.int64
  • 整数无符号系列:np.uint8、np.uint16、np.uint32、np.uint64
  • 浮点数:np.float32、np.float64
  • 布尔值:np.bool

2,shape对象

以元组形式表示一个数组的维度,前三个维度有名称:第一个维度是行,第二个维度是列,第三个维度是高

3,ndim对象

数组各个维度的元素数量

4,NumPy的常量

  • np.Inf 表示无穷大
  • np.nan 表示非数字
  • np.pi

三,NumPy的数据类型

dtype(数据类型)是一个特殊的对象,每一个ndarray对象都有一个dtype,可以通过astype()函数强制转换数据元素的类型:

>>> arr=np.array([1,2,3])
>>> arr.dtype
dtype('int32')
>>> arr.astype(np.uint8)
array([1, 2, 3], dtype=uint8)

NumPy支持的日期时间类型是:np.datetime64,日期单位是年('Y'),月('M'),周('W')和天('D'), 而时间单位是小时('h'),分钟('m') ),秒('s'), 毫秒('ms')和一些额外的SI前缀基于秒的单位。 对于“非时间”值,datetime64数据类型还接受字符串“NAT”(不是时间), 以小写/大写字母的任意组合。

np.datetime64('2005-02-25')

从字符串创建日期时间数组时,仍然可以通过使用具有通用单位的日期时间类型从输入中自动选择单位。

>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64')
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')

np.arange()函数可以根据时间单位生成时间范围:

>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]')

NumPy允许两个Datetime值相减,这个操作产生一个带有时间单位的数字。timedelta64的参数是一个数字(用于表示单位数),以及日期/时间单位,如 (D)ay, (M)onth, (Y)ear, (h)ours, (m)inutes, 或者 (s)econds。timedelta64数据类型也接受字符串“NAT”代替“非时间”值的数字。

>>> numpy.timedelta64(1, 'D')

Datetimes 和 Timedeltas 一起工作,为简单的日期时间计算提供方法。

>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
numpy.timedelta64(366,'D')
>>> np.datetime64('2009') + np.timedelta64(20, 'D')
numpy.datetime64('2009-01-21')

四,形状操纵

一个数组的形状是由每个轴的元素数量决定的,可以通过reshape()和resize()函数来操纵数组的形状。

1,reshape函数

reshape()函数返回一个给定shape的数组的副本,不会修改原始数组:

numpy.reshape(a, newshape, order='C')

参数 newshape 表示数组的形状,对于二维数组,newshape是 (row, col) ,第一个维度是行数,第二个维度是列数。

例如,下面的代码把一个一维数组转换为4行2列的二位数组:

a=np.arange(8)
np.reshape(a,(4,2))

2,resize函数

resize()函数会修改原始数组,不会返回任何数据,直接对原始数组进行修改:

ndarray.resize(new_shape, refcheck=True)

参数new_shape是元组或n个int数字,表示数组的形状。

>>> a.resize((2,6))
>>> a
array([[ 2.,  8.,  0.,  6.,  4.,  5.],
       [ 1.,  1.,  8.,  9.,  3.,  6.]])

3,展开数组

ravel()用于返回数组的展开形式,在展开成一维数组时,最右边的索引“变化最快”。

numpy.ravel(a, order='C')[source]

举个例子,从行维度和列维度的最小值开始,依次增加,获取的元素依次排列,构成一维数组:

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])

四,栅格数据

对于mgrid()函数,用于生成多维数据,参数是一个序列,常用于生成1维,2维和3维数据:

np.mgrid[ 第1维,第2维 ,第3维 , …] 

第n维的书写形式为:

start:end:step

如果step为整数,表示间隔,左闭右开;如果step为 int + j,表示点数,左闭右闭。

对于np.meshgrid()用于生成网格型数据,接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对。

np.meshgrid(x, y)

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: