百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

资深程序员教你用Python,十分钟搞定人脸识别

ztj100 2025-01-16 21:39 13 浏览 0 评论

前言

今天,我们用Python实现简单的人脸识别技术!

Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的。这里介绍的是准确性比较高的一种。

一、首先

梳理一下实现人脸识别需要进行的步骤:

流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间。

既然用的是python,那自然少不了包的使用了,在看代码之前,我们先将整个项目所需要的包罗列一下:

· CV2(Opencv):图像识别,摄像头调用

· os:文件操作

· numpy:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库

· PIL:Python Imaging Library,Python平台事实上是图像处理的标准库

二、接下来

1.对照人脸获取

#-----获取人脸样本-----
import cv2
 
#调用笔记本内置摄像头,参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
#调用人脸分类器,要根据实际路径调整3
face_detector = cv2.CascadeClassifier(r'X:/Users/73950/Desktop/FaceRec/haarcascade_frontalface_default.xml')  #待更改
#为即将录入的脸标记一个id
face_id = input('\n User data input,Look at the camera and wait ...')
#sampleNum用来计数样本数目
count = 0
 
while True:    
    #从摄像头读取图片
    success,img = cap.read()    
    #转为灰度图片,减少程序符合,提高识别度
    if success is True: 
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
    else:   
        break
    #检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸
    #其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
    faces = face_detector.detectMultiScale(gray, 1.3, 5)
 
    #框选人脸,for循环保证一个能检测的实时动态视频流
    for (x, y, w, h) in faces:
        #xy为左上角的坐标,w为宽,h为高,用rectangle为人脸标记画框
        cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
        #成功框选则样本数增加
        count += 1  
        #保存图像,把灰度图片看成二维数组来检测人脸区域
        #(这里是建立了data的文件夹,当然也可以设置为其他路径或者调用数据库)
        cv2.imwrite("data/User."+str(face_id)+'.'+str(count)+'.jpg',gray[y:y+h,x:x+w]) 
        #显示图片
        cv2.imshow('image',img)       
        #保持画面的连续。waitkey方法可以绑定按键保证画面的收放,通过q键退出摄像
    k = cv2.waitKey(1)        
    if k == '27':
        break        
        #或者得到800个样本后退出摄像,这里可以根据实际情况修改数据量,实际测试后800张的效果是比较理想的
    elif count >= 800:
        break
 
#关闭摄像头,释放资源
cap.realease()
cv2.destroyAllWindows()

经博主测试,在执行

“face_detector = cv2.CascadeClssifier(r'C:\Users\admin\Desktop\python\data\
haarcascade_frontalface_default.xml')”此语句时,实际路径中的目录名尽量不要有中文字符出现,否则容易报错。

这样,你的电脑就能看到你啦!

2. 通过算法建立对照模型

本次所用的算法为opencv中所自带的算法,opencv较新版本中(我使用的是2.4.8)提供了一个FaceRecognizer类,里面有相关的一些人脸识别的算法及函数接口,其中包括三种人脸识别算法(我们采用的是第三种)

1.eigenface

2.fisherface

3.LBPHFaceRecognizer

LBP是一种特征提取方式,能提取出图像的局部的纹理特征,最开始的LBP算子是在3X3窗口中,取中心像素的像素值为阀值,与其周围八个像素点的像素值比较,若像素点的像素值大于阀值,则此像素点被标记为1,否则标记为0。这样就能得到一个八位二进制的码,转换为十进制即LBP码,于是得到了这个窗口的LBP值,用这个值来反映这个窗口内的纹理信息。

LBPH是在原始LBP上的一个改进,在opencv支持下我们可以直接调用函数直接创建一个LBPH人脸识别的模型。

我们在前一部分的同目录下创建一个Python文件,文件名为trainner.py,用于编写数据集生成脚本。同目录下,创建一个文件夹,名为trainner,用于存放我们训练后的识别器。

#-----建立模型、创建数据集-----#-----建立模型、创建数据集-----
 
import os
import cv2
import numpy as np
from PIL import Image
#导入pillow库,用于处理图像
#设置之前收集好的数据文件路径
path = 'data'
 
#初始化识别的方法
recog = cv2.face.LBPHFaceRecognizer_create()
 
#调用熟悉的人脸分类器
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
 
#创建一个函数,用于从数据集文件夹中获取训练图片,并获取id
#注意图片的命名格式为User.id.sampleNum
def get_images_and_labels(path):
    image_paths = [os.path.join(path,f) for f in os.listdir(path)]
    #新建连个list用于存放
    face_samples = []
    ids = []
 
    #遍历图片路径,导入图片和id添加到list中
    for image_path in image_paths:
 
        #通过图片路径将其转换为灰度图片
        img = Image.open(image_path).convert('L')
 
        #将图片转化为数组
        img_np = np.array(img,'uint8')
 
        if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
            continue
 
        #为了获取id,将图片和路径分裂并获取
        id = int(os.path.split(image_path)[-1].split(".")[1])
        faces = detector.detectMultiScale(img_np)
 
        #将获取的图片和id添加到list中
        for(x,y,w,h) in faces:
            face_samples.append(img_np[y:y+h,x:x+w])
            ids.append(id)
    return face_samples,ids
 
#调用函数并将数据喂给识别器训练
print('Training...')
faces,ids = get_images_and_labels(path)
#训练模型
recog.train(faces,np.array(ids))
#保存模型
recog.save('trainner/trainner.yml')

3.识别

检测,校验,输出其实都是识别的这一过程,与前两个过程不同,这是涉及实际使用的过程,所以我们把他整合放在一个统一的一个文件内。


#-----检测、校验并输出结果-----
import cv2
 
#准备好识别方法
recognizer = cv2.face.LBPHFaceRecognizer_create()
 
#使用之前训练好的模型
recognizer.read('trainner/trainner.yml')
 
#再次调用人脸分类器
cascade_path = "haarcascade_frontalface_default.xml" 
face_cascade = cv2.CascadeClassifier(cascade_path)
 
#加载一个字体,用于识别后,在图片上标注出对象的名字
font = cv2.FONT_HERSHEY_SIMPLEX
 
idnum = 0
#设置好与ID号码对应的用户名,如下,如0对应的就是初始
 
names = ['初始','admin','user1','user2','user3']
 
#调用摄像头
cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
 
while True:
    ret,img = cam.read()
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    #识别人脸
    faces = face_cascade.detectMultiScale(
            gray,
            scaleFactor = 1.2,
            minNeighbors = 5,
            minSize = (int(minW),int(minH))
            )
    #进行校验
    for(x,y,w,h) in faces:
        cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
        idnum,confidence = recognizer.predict(gray[y:y+h,x:x+w])
 
        #计算出一个检验结果
        if confidence < 100:
            idum = names[idnum]
            confidence = "{0}%",format(round(100-confidence))
        else:
            idum = "unknown"
            confidence = "{0}%",format(round(100-confidence))
 
        #输出检验结果以及用户名
        cv2.putText(img,str(idum),(x+5,y-5),font,1,(0,0,255),1)
        cv2.putText(img,str(confidence),(x+5,y+h-5),font,1,(0,0,0),1)
 
        #展示结果
        cv2.imshow('camera',img)
        k = cv2.waitKey(20)
        if k == 27:
            break
 
#释放资源
cam.release()
cv2.destroyAllWindows()

现在,你的电脑就能识别出你来啦!

通过其他组合也可以实现开机检测等多种功能,你学会了吗?

最后

感谢大家阅读!!!

相关推荐

使用 Pinia ORM 管理 Vue 中的状态

转载说明:原创不易,未经授权,谢绝任何形式的转载状态管理是构建任何Web应用程序的重要组成部分。虽然Vue提供了管理简单状态的技术,但随着应用程序复杂性的增加,处理状态可能变得更具挑战性。这就是为什么...

Vue3开发企业级音乐Web App 明星讲师带你学习大厂高质量代码

Vue3开发企业级音乐WebApp明星讲师带你学习大厂高质量代码下栽课》jzit.top/392/...

一篇文章说清 webpack、vite、vue-cli、create-vue 的区别

webpack、vite、vue-cli、create-vue这些都是什么?看着有点晕,不要怕,我们一起来分辨一下。...

超赞 vue2/3 可视化打印设计VuePluginPrint

今天来给大家推荐一款非常不错的Vue可拖拽打印设计器Hiprint。引入使用//main.js中引入安装import{hiPrintPlugin}from'vue-plugin-...

搭建Trae+Vue3的AI开发环境(vue3 ts开发)

从2024年2025年,不断的有各种AI工具会在自媒体中火起来,号称各种效率王炸,而在AI是否会替代打工人的话题中,程序员又首当其冲。...

如何在现有的Vue项目中嵌入 Blazor项目?

...

Vue中mixin怎么理解?(vue的mixins有什么用)

作者:qdmryt转发链接:https://mp.weixin.qq.com/s/JHF3oIGSTnRegpvE6GSZhg前言...

Vue脚手架安装,初始化项目,打包并用Tomcat和Nginx部署

1.创建Vue脚手架#1.在本地文件目录创建my-first-vue文件夹,安装vue-cli脚手架:npminstall-gvue-cli安装过程如下图所示:创建my-first-vue...

新手如何搭建个人网站(小白如何搭建个人网站)

ElementUl是饿了么前端团队推出的桌面端UI框架,具有是简洁、直观、强悍和低学习成本等优势,非常适合初学者使用。因此,本次项目使用ElementUI框架来完成个人博客的主体开发,欢迎大家讨论...

零基础入门vue开发(vue快速入门与实战开发)

上面一节我们已经成功的安装了nodejs,并且配置了npm的全局环境变量,那么这一节我们就来正式的安装vue-cli,然后在webstorm开发者工具里运行我们的vue项目。这一节有两种创建vue项目...

.net core集成vue(.net core集成vue3)

react、angular、vue你更熟悉哪个?下边这个是vue的。要求需要你的计算机安装有o.netcore2.0以上版本onode、webpack、vue-cli、vue(npm...

使用 Vue 脚手架,为什么要学 webpack?(一)

先问大家一个很简单的问题:vueinitwebpackprjectName与vuecreateprojectName有什么区别呢?它们是Vue-cli2和Vue-cli3创建...

vue 构建和部署(vue项目部署服务器)

普通的搭建方式(安装指令)安装Node.js检查node是否已安装,终端输入node-v会使用命令行(安装)npminstallvue-cli-首先安装vue-clivueinitwe...

Vue.js 环境配置(vue的环境搭建)

说明:node.js和vue.js的关系:Node.js是一个基于ChromeV8引擎的JavaScript运行时环境;类比:Java的jvm(虚拟机)...

vue项目完整搭建步骤(vuecli项目搭建)

简介为了让一些不太清楚搭建前端项目的小白,更快上手。今天我将一步一步带领你们进行前端项目的搭建。前端开发中需要用到框架,那vue作为三大框架主流之一,在工作中很常用。所以就以vue为例。...

取消回复欢迎 发表评论: