import numpy as np
from matplotlib import pyplot as plt
Ideal BPF
x = np.array([0, 1, 2, 2.0001, 3, 3.9999, 4, 5, 6])
y = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0])
plt.plot(x, y, 'k', linewidth=3)
plt.ylabel('Response')
plt.xlabel('Frequency')
Second-Order Band-Pass Filter
x = np.arange(0, 20, 0.1)
wo = 10
Qp = 5
y = ((wo/Qp)*x)/np.sqrt((wo**2 - x**2)**2 + (wo*x/Qp)**2)
plt.plot(x, y, linewidth = 3)
plt.plot(x, (1/np.sqrt(2)*np.ones(len(x))), '--', color='black')
plt.plot(wo*np.ones(2), [0, 1], 'r--')
plt.plot(wo*(np.sqrt(1 + (1/(4*Qp**2))) + 1/(2*Qp))*np.ones(2), [0, 1], '--', color='orange')
plt.plot(wo*(np.sqrt(1 + (1/(4*Qp**2))) - 1/(2*Qp))*np.ones(2), [0, 1], '--', color='orange')
plt.xlim(left=0, right=20)
plt.ylim(bottom = 0, top = 1)
plt.xlabel('Frequency')
plt.ylabel('Response')
plt.legend(['Response', 'Characterstic Freq', 'Critical Freq', '1/root(2)'])
Capacitive Passive BPF
x = np.arange(0, 70, 0.1)
R1 = 10000
C1 = 0.00001
R2 = 40000
C2 = 0.00001
G = (R1*C1/(R1*C1 + R2*C2 + R1*C2))
wo = np.sqrt(1/(R1*C1*R2*C2))
dw = 1/(R1*C1) + 1/(R2*C2) + 1/(R1*C2)
bw = np.sqrt(abs(2*G**2-1))*dw
w1 = (1/2)*(np.sqrt(4*wo**2 + bw**2) - bw)
w2 = (1/2)*(np.sqrt(4*wo**2 + bw**2) + bw)
y = (x/(R2*C2))/np.sqrt((1/(R1*R2*C1*C2) - x**2)**2 + ((R1*C1 + R2*C2 + R1*C2)/(R1*R2*C1*C2)*x)**2)
plt.plot(x, y, linewidth = 3)
plt.plot(wo*np.ones(2), [0, 0.5], 'r--')
plt.plot(x, G*(np.ones(len(x))), '--', color='black')
plt.plot(w1*np.ones(2), [0, 0.5], '--', color = 'orange')
plt.plot(w2*np.ones(2), [0, 0.5], '--', color = 'orange')
plt.xlim(left=0, right=50)
plt.ylim(bottom = 0, top = 0.5)
plt.legend(['Response', 'Characterstic Freq', 'Gain', 'Critical Freq'])
plt.xlabel('Frequency')
plt.ylabel('Response')
Active Capacitive LPF
x = np.arange(0, 70, 0.1)
R1 = 10000
C1 = 0.00001
R2 = 40000
C2 = 0.00001
G = (R2*C1/(R1*C1 + R2*C2))
wo = np.sqrt(1/(R1*C1*R2*C2))
dw = 1/(R1*C1) + 1/(R2*C2)
bw = np.sqrt(abs(2*G**2-1))*dw
w1 = (1/2)*(np.sqrt(4*wo**2 + bw**2) - bw)
w2 = (1/2)*(np.sqrt(4*wo**2 + bw**2) + bw)
y = (x/(R1*C2))/np.sqrt((1/(R1*R2*C1*C2) - x**2)**2 + ((R1*C1 + R2*C2)/(R1*R2*C1*C2)*x)**2)
plt.plot(x, y, linewidth = 3)
plt.plot(wo*np.ones(2), [0, 1], 'r--')
plt.plot(x, G*(np.ones(len(x))), '--', color='black')
plt.plot(w1*np.ones(2), [0, 1], '--', color = 'orange')
plt.plot(w2*np.ones(2), [0, 1], '--', color = 'orange')
plt.xlim(left=0, right=50)
plt.ylim(bottom = 0, top = 1)
plt.legend(['Response', 'Characterstic Freq', 'Gain', 'Critical Freq'])
plt.xlabel('Frequency')
plt.ylabel('Response')
知乎学术咨询:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
分割线分割线分割线
基于小波分析的时间序列降噪(Python,ipynb文件)
完整代码:
https://mbd.pub/o/bread/mbd-Z5yZkppv
时间序列的最大重叠离散小波分解(Python)
完整代码:
https://mbd.pub/o/bread/mbd-Z5yZmZ1s
基于连续小波变换的信号滤波方法(Python,ipynb文件)
完整代码:
https://mbd.pub/o/bread/mbd-Z5yZlJpx
信号的时域、频域和时频域特征提取(Python)
完整代码:
https://mbd.pub/o/bread/mbd-Z5yalJ1s
不同小波族的优缺点
完整代码:
https://mbd.pub/o/bread/mbd-Z5yak59x