【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能
ztj100 2024-12-28 16:50 12 浏览 0 评论
一、介绍
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬(American Bulldog)', '美国比特犬(American Pit Bull Terrier)', '巴赛特猎犬(Basset Hound)', '比格犬(Beagle)', '拳师犬(Boxer)', '吉娃娃(Chihuahua)', '英国可卡犬(English Cocker Spaniel)', '英国赛特犬(English Setter)', '德国短毛指示犬(German Shorthaired)', '大比利牛犬(Great Pyrenees)', '哈瓦那犬(Havanese)', '日本 chin(Japanese Chin)', '德国狐犬(Keeshond)', '莱昂贝格犬(Leonberger)', '迷你杜宾犬(Miniature Pinscher)', '纽芬兰犬(Newfoundland)', '博美犬(Pomeranian)', '哈巴狗(Pug)', '圣伯纳犬(Saint Bernard)', '萨摩耶犬(Samoyed)', '苏格兰梗犬(Scottish Terrier)', '柴犬(Shiba Inu)', '斯塔福郡斗牛犬(Staffordshire Bull Terrier)', '小麦梗(Wheaten Terrier)', '约克夏梗(Yorkshire Terrier)'】
再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张宠物图片识别其名称。
二、系统效果图片展示
三、完整代码 and 演示视频 and 安装
地址:https://www.yuque.com/ziwu/yygu3z/blwx3d16qfusg8hg
四、系统关键技术~ResNet50算法
ResNet50(Residual Network 50)是一种深度卷积神经网络(CNN)模型,提出者为微软研究院的Kaiming He等人。它是ResNet系列模型的一部分,通过引入残差学习(Residual Learning)的思想,解决了深度神经网络在加深时训练变得困难的问题。ResNet50的"50"指的是该网络的层数,模型包含50个卷积层、池化层和全连接层。ResNet通过跳跃连接(Skip Connections)或残差连接(Residual Connections)将输入直接传递给后续层,避免了深层网络中梯度消失和梯度爆炸的问题,从而使得网络能够有效地训练更加深层次的结构。
ResNet50的特点:
- 残差块(Residual Blocks):ResNet通过引入跳跃连接,允许信号在某些层之间跳跃,直接传递。这些残差连接可以有效缓解网络层数加深后梯度消失的问题,确保训练过程中的梯度仍然能够有效传播。
- 更深的网络:与传统的CNN相比,ResNet50能够在较深的网络结构中训练并取得优异的性能,因为它通过跳跃连接解决了深度网络训练中的难题。
- 模块化设计:ResNet50由多个残差模块构成,每个模块包含两个或更多的卷积层,通过快捷连接将输入直接与输出相加。这种设计使得网络能够有效地捕捉到不同层次的特征信息。
ResNet50的结构:
ResNet50的网络结构由多个残差模块(Residual Blocks)堆叠而成,每个模块内部包含两个3x3的卷积层以及一个捷径连接。整个网络可以分为四个阶段(Stage),每个阶段的输出通道数逐渐增加,具体结构如下:
- Stage 1:由一个卷积层和池化层组成。
- Stage 2-4:每个阶段包含多个残差模块。
- 最后,使用全局平均池化层(Global Average Pooling)将特征图缩减为一个向量,并通过一个全连接层输出最终的分类结果。
优势:
- 训练深层次网络:通过引入残差学习,ResNet可以轻松训练非常深的网络,像ResNet50、ResNet101、ResNet152等都取得了极大的成功。
- 避免了梯度消失:残差连接有助于保持信号的传播,使得梯度能够有效地从输出层传播回输入层,从而避免梯度消失问题。
下面是一个使用ResNet50模型进行图像分类的简单TensorFlow代码示例:
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers, models
# 加载ResNet50预训练模型(不包括顶部分类层)
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# 固定ResNet50的卷积层,不进行训练
base_model.trainable = False
# 构建自定义分类模型
model = models.Sequential([
base_model, # 使用预训练的ResNet50卷积层
layers.GlobalAveragePooling2D(), # 全局平均池化层
layers.Dense(512, activation='relu'), # 全连接层
layers.Dense(10, activation='softmax') # 输出10个类别的预测
])
# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 数据预处理:加载训练和验证数据集
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train', # 训练数据路径
target_size=(224, 224),
batch_size=32,
class_mode='sparse'
)
# 训练模型
model.fit(train_generator, epochs=10)
代码说明:
- ResNet50模型:通过ResNet50函数加载预训练的ResNet50模型,并去掉顶部的全连接层(include_top=False),因为我们会自定义一个新的分类器。
- 全局平均池化:GlobalAveragePooling2D将特征图的空间维度压缩为单个数值,以减少参数量。
- 训练过程:使用Adam优化器、sparse_categorical_crossentropy损失函数进行训练,并在训练时加载图像数据集。
ResNet50能够有效利用预训练权重来提取图像特征,从而在各种图像分类任务中表现优异。
相关推荐
-
- SpringBoot如何实现优雅的参数校验
-
平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...
-
2025-05-11 19:46 ztj100
- Java中的空指针怎么处理?
-
#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...
- 一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了
-
来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...
- 用了这两款插件,同事再也不说我代码写的烂了
-
同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...
- SpringBoot中6种拦截器使用场景
-
SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...
- 用注解进行参数校验,spring validation介绍、使用、实现原理分析
-
springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...
- 快速上手:SpringBoot自定义请求参数校验
-
作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...
- 分布式微服务架构组件
-
1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...
- 优雅的参数校验,告别冗余if-else
-
一、参数校验简介...
- Spring Boot断言深度指南:用断言机制为代码构筑健壮防线
-
在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...
- 如何在项目中优雅的校验参数
-
本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...
- SpingBoot项目使用@Validated和@Valid参数校验
-
一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...
- 28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)
-
在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...
- Springboot @NotBlank参数校验失效汇总
-
有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...
- 这可能是最全面的Spring面试八股文了
-
Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)