百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

keras 数据集制作方式 keras训练数据格式

ztj100 2024-12-28 16:50 22 浏览 0 评论

数据集的读取方式

  • 文件目录方式
  • DataFrame 方式读取
  • tensorflow data 方式读取

列举的三种是个人认为实际开发中比较常用的方式、后面我们使用这三种方式分别来进行数据集的读取

keras内置的学习数据集

在keras学习的时候、我们常常会用到它自带的一些数据集来做网络学习例如,在使用的时候我们会觉得使用起来非常的便捷

from keras.datasets import cifar10 
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

from keras.datasets import imdb 
(x_train, y_train), (x_test, y_test) = 
  imdb.load_data(path="imdb.npz", num_words=None, skip_top=0, maxlen=None, 
  seed=113, start_char=1, oov_char=2, index_from=3)

模型定义

使用上面的数据集之前、我们先定义一个模型结构、如下图所示

from typing import Optional, Callable
import keras
from keras.src.layers import GlobalAveragePooling2D, Dense, Dropout


def buildResNet50(input_shape=(224, 224, 3), trainable=False):
    net = keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=input_shape, )
    net.trainable = trainable
    return net

def buildResNet101(input_shape=(224, 224, 3), trainable=False):
    net = keras.applications.ResNet101(weights="imagenet", include_top=False, input_shape=input_shape)
    net.trainable = trainable
    return net


class ResNet(object):
    def __init__(self, base_model_callback: Optional[Callable] = None):
        super(ResNet, self).__init__()
        self.base_model = base_model_callback()

    def addLayers(self, *input_layer):
        x = self.base_model.output
        for layer in input_layer:
            x = layer(x)
        return x

    def build_model(self):
        layers = [
            GlobalAveragePooling2D(),
            Dense(2048, activation='relu'),
            Dropout(0.5, name='dropout'),
        ]
        x = self.addLayers(*layers)
        out_put = Dense(4, activation='softmax',name='output')(x)
        return keras.Model(inputs=[self.base_model.input,], outputs=[out_put,])


if __name__ == '__main__':
    input_shape = (224, 224, 3)
    resNet = ResNet(base_model_callback=lambda: buildResNet50(input_shape=input_shape))
    model = resNet.build_model()

    model.summary()

    keras.utils.plot_model(model, to_file='model.png', show_layer_names=True,show_shapes=True, rankdir='TB')


数据准备

有了上面的网络结构、我们需要做训练的前置准备`model.fit()` 我选择了4个分类的车辆数据、作为学习使用

文件目录方式获取

  • 定义 MutableDataset 数据集类
class MutableDataset(object):
    def __init__(self):
        super(MutableDataset, self).__init__()

    """使用文件目录的方式读取、每个子文件夹作为一个分类"""
    def data_from_dict(self, root_dict,batch_size = 4):
        train_datagen = ImageDataGenerator(rescale=1. / 255)
        train_generator = train_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=batch_size,class_mode='categorical')
        #val_datagen = ImageDataGenerator(rescale=1. / 255)
        #val_generator = val_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=4,class_mode='categorical',subset='validation')
        return train_generator #val_generator
        
#####################使用上面的网络模型######################        
if __name__ == '__main__':
    input_shape = (224, 224, 3)
    resNet = ResNet(base_model_callback=lambda: buildResNet50(input_shape=input_shape))
    model = resNet.build_model()

    multi_dataset = MutableDataset()
    train_data = multi_dataset.data_from_dict(root_dict="../data")
    # x_batch, y_batch = next(train_data)  # 获取一个批次的数据
    # print(x_batch.shape)  # 应该是 (batch_size, 224, 224, 3)

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.fit(train_data, epochs=10, batch_size=4,)

Dataframe方式获取数据

class MutableDataset(object):
    def __init__(self):
        super(MutableDataset, self).__init__()

    """使用文件目录的方式读取"""
    def data_from_dict(self, root_dict,batch_size = 4):
        train_datagen = ImageDataGenerator(rescale=1. / 255)
        train_generator = train_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=batch_size,class_mode='categorical')
        #val_datagen = ImageDataGenerator(rescale=1. / 255)
        #val_generator = val_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=4,class_mode='categorical',subset='validation')
        return train_generator #val_generator
		
    """读取文件目录下面的文件信息、可以自己定义我们自己的结构"""
    def get_file(self, root_dict,category,images,labels):
        for file in os.listdir(root_dict):
            full_path = os.path.join(root_dict, file)
            if os.path.isdir(full_path):
                self.get_file(full_path,file,images,labels)
            else:
                images.append(full_path)
                labels.append(category)

        return images,labels
		
    """从dataframe加载对应的数据"""
    def data_from_frame(self,root_dict,batch_size = 4):
        images,labels = self.get_file(root_dict,category=None,images=[],labels=[])
        data_frame = DataFrame({"paths":images,"labels":labels})
        train_datagen = ImageDataGenerator(rescale=1. / 255)
        train_generator = train_datagen.flow_from_dataframe(dataframe=data_frame,x_col="paths",y_col="labels",batch_size=batch_size,target_size=(224, 224),class_mode='categorical')
        return train_generator
        
# 训练的时候调整对应的数据获取方式        
if __name__ == '__main__':
    input_shape = (224, 224, 3)
    resNet = ResNet(base_model_callback=lambda: buildResNet50(input_shape=input_shape))
    model = resNet.build_model()

    multi_dataset = MutableDataset()
    #train_data = multi_dataset.data_from_dict(root_dict="../data")
    train_data = multi_dataset.data_from_frame(root_dict="../data")
    # x_batch, y_batch = next(train_data)  # 获取一个批次的数据
    # print(x_batch.shape)  # 应该是 (batch_size, 224, 224, 3)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.fit(train_data, epochs=10, batch_size=4,)

基于tensorflow的data获取


class MutableDataset(object):
    def __init__(self):
        super(MutableDataset, self).__init__()

    """使用文件目录的方式读取"""
    def data_from_dict(self, root_dict,batch_size = 4):
        train_datagen = ImageDataGenerator(rescale=1. / 255)
        train_generator = train_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=batch_size,class_mode='categorical')
        #val_datagen = ImageDataGenerator(rescale=1. / 255)
        #val_generator = val_datagen.flow_from_directory(root_dict,target_size=(224, 224),batch_size=4,class_mode='categorical',subset='validation')
        return train_generator #val_generator

    def get_file(self, root_dict,category,images,labels):
        for file in os.listdir(root_dict):
            full_path = os.path.join(root_dict, file)
            if os.path.isdir(full_path):
                self.get_file(full_path,file,images,labels)
            else:
                images.append(full_path)
                labels.append(category)

        return images,labels
		
    """dataframe方式"""
    def data_from_frame(self,root_dict,batch_size = 4):
        images,labels = self.get_file(root_dict,category=None,images=[],labels=[])
        data_frame = DataFrame({"paths":images,"labels":labels})
        train_datagen = ImageDataGenerator(rescale=1. / 255)
        train_generator = train_datagen.flow_from_dataframe(dataframe=data_frame,x_col="paths",y_col="labels",batch_size=batch_size,target_size=(224, 224),class_mode='categorical')
        return train_generator

    """这个是使用tf处理方式"""
    def _parse_function(self,x, y):
        label_category = {"bus":0,"family sedan":1,"minibus":2,"SUV":3}
        # 将图像路径解码
        original_path = x.numpy().decode("utf-8")
        original_label = y.numpy().decode("utf-8")
        original_label = label_category[original_label]

        image = cv2.imread(original_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = cv2.resize(image, (224, 224))

        y_one_hot = tf.one_hot(original_label, depth=4)
        x = tf.cast(image, tf.float32)
        y = tf.cast(y_one_hot, tf.int32)
        return x, y

        # 另外一种使用tensorflow的api来处理
        # x = tf.io.read_file(x)
        # x = tf.image.decode_jpeg(x, channels=3)
        # x = tf.image.resize(x, [244, 244])
        # x = tf.cast(x, dtype=tf.float32) / 255.0
        # y = tf.convert_to_tensor(y)
        # y = tf.one_hot(y, depth=5)
        # return x, y

    def data_from_tf_dataset(self,root_dict,batch_size = 4):

        images, labels = self.get_file(root_dict, category=None, images=[], labels=[])

        db_train = (tf.data.Dataset.from_tensor_slices((images, labels))
                    .map(lambda x,y: tf.py_function(self._parse_function,inp=[x,y],Tout=[tf.float32,tf.int32])))

        # shape 强制定义
        db_train = db_train.map(lambda x,y: (tf.ensure_shape(x, [224, 224, 3]), tf.ensure_shape(y, [4])))
        db_train = db_train.batch(batch_size=batch_size)
        return db_train
        
 
 if __name__ == '__main__':
    input_shape = (224, 224, 3)
    resNet = ResNet(base_model_callback=lambda: buildResNet50(input_shape=input_shape))
    model = resNet.build_model()

    multi_dataset = MutableDataset()
    #train_data = multi_dataset.data_from_dict(root_dict="../data")
    #train_data = multi_dataset.data_from_frame(root_dict="../data")
    train_data = multi_dataset.data_from_tf_dataset(root_dict="../data")
    # x_batch, y_batch = next(train_data)  # 获取一个批次的数据
    # print(x_batch.shape)  # 应该是 (batch_size, 224, 224, 3)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.fit(train_data, epochs=10, batch_size=4,)

网络结构如下

相关推荐

sharding-jdbc实现`分库分表`与`读写分离`

一、前言本文将基于以下环境整合...

三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么

在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...

MySQL8行级锁_mysql如何加行级锁

MySQL8行级锁版本:8.0.34基本概念...

mysql使用小技巧_mysql使用入门

1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...

MySQL/MariaDB中如何支持全部的Unicode?

永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...

聊聊 MySQL Server 可执行注释,你懂了吗?

前言MySQLServer当前支持如下3种注释风格:...

MySQL系列-源码编译安装(v5.7.34)

一、系统环境要求...

MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了

对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...

MySQL字符问题_mysql中字符串的位置

中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...

深圳尚学堂:mysql基本sql语句大全(三)

数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...

MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?

大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...

一文讲清怎么利用Python Django实现Excel数据表的导入导出功能

摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...

用DataX实现两个MySQL实例间的数据同步

DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...

MySQL数据库知识_mysql数据库基础知识

MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...

如何为MySQL中的JSON字段设置索引

背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...

取消回复欢迎 发表评论: