人工智能实战:如何完成支持向量机算法的调参工作(附代码)
ztj100 2024-12-07 18:51 21 浏览 0 评论
专栏推荐
正文
我们已经做出了线性可分以及线性不可分的支持向量机,但是我们不知道究竟什么样的参数C和核函数参数γ更加的适合我们的当前模型,一个好的参数更加有利于我们的模型,所以如何才能选择。这篇文章的目的就是演示如何才能选出我们所要的那个参数,我将使用两种方法。方法一就是手动选出(逐渐遍历的方法),方法二就是使用sklearn封装好的机器学习库来完成方法一的任务。
我现在有一个数据集,它的所有变量是这样的
其中x,y我们把它用作是训练集数据,然后把Xval,yval它当作测试集数据。我们现在先来获取到训练集数据以及测试集数据。
training = pd.DataFrame(mat.get('X'), columns=['X1', 'X2'])
training['y'] = mat.get('y')
cv = pd.DataFrame(mat.get('Xval'), columns=['X1', 'X2'])
cv['y'] = mat.get('yval')
我们现在已经获取到了训练集training和测试集cv。
现在我们要获取到C和γ的各种组合,用各种组合去不断地尝试究竟哪一种地组合更好。那么我们先来完成对这二者进行组合。
candidate = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
这是我们的可能地取值,然后我们对其进行两两地组合
combination = [(C, gamma) for C in candidate for gamma in candidate]
我们输出combination为:
两两之间任意地组合,那么一共有81中组合,这就是我们要从中间选出究竟哪一种组合才是最好地那个。
下面我们对这些组合进行遍历,然后用每一组进行拟合一个svm的训练器,拟合之后我们使用测试集进行测试,把每一个测试的精确度保存起来,这样我们就可以根据精确度最高的那个来选出我们所想要的最好的那个组合了。
search = [] for C, gamma in combination: svc = svm.SVC(C=C, gamma=gamma) svc.fit(training[['X1', 'X2']], training['y']) search.append(svc.score(cv[['X1', 'X2']], cv['y']))
有了每一个组合的对测试集的精确度的结果之后,我们只需要找出精确度最好的那一个组合,就是我们所要的那个组合。
best_score = search[np.argmax(search)] best_param = combination[np.argmax(search)] np.argmax(search)
输出精确度最大的那个的小标。同时这个下标也是search和combination对应的下标。那么这个就是我们所要找的best_score(最好的组合的精确度)以及最好的组合(best_param)。
print(best_score) print(best_param)
输出二者的结果分别为:
0.965
(0.3, 100)
可以知道当我们的C=0.3,而γ=100的时候可能是最好的,我们要确定此时的参数组合形成的模型的分类指标
from sklearn import metrics
best_svc = svm.SVC(C=0.3, gamma=100) best_svc.fit(training[['X1', 'X2']], training['y']) ypred = best_svc.predict(cv[['X1', 'X2']]) print(metrics.classification_report(cv['y'], ypred))
我们现在是我们当前参数组合中最好的模型了,那么我们使用metrics.classification_report用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。
该方法的主要参数是:
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。
digits:int,输出浮点值的位数.
输出的结果为:
其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和)
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1值.
这样我们使用的是for循环的方式找到了最好的模型,其实我们本可以不这样,因为我们可以使用sklearn库使用封装好的交叉验证的程序来完成这个操作。
if __name__ == "__main__": parameters = {'C': candidate, 'gamma': candidate} svc = svm.SVC() clf = GridSearchCV(svc, parameters, n_jobs=-1) clf.fit(training[['X1', 'X2']], training['y']) print (clf.best_params_) print (clf.best_score_) ypred = clf.predict(cv[['X1', 'X2']]) print(metrics.classification_report(cv['y'], ypred))
因为交叉验证是使用的多线程所以我们使用一个main方法来把它给套起来,然后他就会组合多种parameters进行遍历选出最好的那个
全部代码:
from sklearn import svm
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import numpy as np
import pandas as pd
import scipy.io as sio
mat = sio.loadmat('ex6data3.mat')
print(mat.keys())
training = pd.DataFrame(mat.get('X'), columns=['X1', 'X2'])
training['y'] = mat.get('y')
cv = pd.DataFrame(mat.get('Xval'), columns=['X1', 'X2'])
cv['y'] = mat.get('yval')
candidate = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
combination = [(C, gamma) for C in candidate for gamma in candidate]
search = []
for C, gamma in combination:
svc = svm.SVC(C=C, gamma=gamma)
svc.fit(training[['X1', 'X2']], training['y'])
search.append(svc.score(cv[['X1', 'X2']], cv['y']))
best_score = search[np.argmax(search)]
best_param = combination[np.argmax(search)]
best_svc = svm.SVC(C=0.3, gamma=100)
best_svc.fit(training[['X1', 'X2']], training['y'])
ypred = best_svc.predict(cv[['X1', 'X2']])
print(metrics.classification_report(cv['y'], ypred))
if __name__ == "__main__":
parameters = {'C': candidate, 'gamma': candidate}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters, n_jobs=-1)
clf.fit(training[['X1', 'X2']], training['y'])
print (clf.best_params_)
print (clf.best_score_)
ypred = clf.predict(cv[['X1', 'X2']])
print(metrics.classification_report(cv['y'], ypred))
相关推荐
- 离谱!写了5年Vue,还不会自动化测试?
-
前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。Playwright是一个功能强大的端到...
- package.json 与 package-lock.json 的关系
-
模块化开发在前端越来越流行,使用node和npm可以很方便的下载管理项目所需的依赖模块。package.json用来描述项目及项目所依赖的模块信息。那package-lock.json和...
- Github 标星35k 的 SpringBoot整合acvtiviti开源分享,看完献上膝盖
-
前言activiti是目前比较流行的工作流框架,但是activiti学起来还是费劲,还是有点难度的,如何整合在线编辑器,如何和业务表单绑定,如何和系统权限绑定,这些问题都是要考虑到的,不是说纯粹的把a...
- Vue3 + TypeScript 前端研发模板仓库
-
我们把这个Vue3+TypeScript前端研发模板仓库的初始化脚本一次性补全到可直接运行的状态,包括:完整的目录结构所有配置文件研发规范文档示例功能模块(ExampleFeature)...
- Vue 2迁移Vue 3:从响应式到性能优化
-
小伙伴们注意啦!Vue2已经在2023年底正式停止维护,再不升级就要面临安全漏洞没人管的风险啦!而且Vue3带来的性能提升可不是一点点——渲染速度快40%,内存占用少一半,更新速度直接翻倍!还在...
- VUE学习笔记:声明式渲染详解,对比WEB与VUE
-
声明式渲染是指使用简洁的模板语法,声明式的方式将数据渲染进DOM系统。声明式是相对于编程式而言,声明式是面向对象的,告诉框架做什么,具体操作由框架完成。编程式是面向过程思想,需要手动编写代码完成具...
- 苏州web前端培训班, 苏州哪里有web前端工程师培训
-
前端+HTML5德学习内容:第一阶段:前端页面重构:PC端网站布局、HTML5+CSS3基础项目、WebAPP页面布局;第二阶段:高级程序设计:原生交互功能开发、面向对象开发与ES5/ES6、工具库...
- 跟我一起开发微信小程序——扩展组件的代码提示补全
-
用户自定义代码块步骤:1.HBuilderX中工具栏:工具-代码块设置-vue代码块2.通过“1”步骤打开设置文件...
- JimuReport 积木报表 v1.9.3发布,免费可视化报表
-
项目介绍积木报表JimuReport,是一款免费的数据可视化报表,含报表、大屏和仪表盘,像搭建积木一样完全在线设计!功能涵盖:数据报表、打印设计、图表报表、门户设计、大屏设计等!...
- 软开企服开源的无忧企业文档(V2.1.3)产品说明书
-
目录1....
- 一款面向 AI 的下一代富文本编辑器,已开源
-
简介AiEditor是一个面向AI的下一代富文本编辑器。开箱即用、支持所有前端框架、支持Markdown书写模式什么是AiEditor?AiEditor是一个面向AI的下一代富文本编辑...
- 玩转Markdown(2)——抽象语法树的提取与操纵
-
上一篇玩转Markdown——数据的分离存储与组件的原生渲染发布,转眼已经鸽了大半年了。最近在操纵mdast生成md文件的时候,心血来潮,把玩转Markdown(2)给补上了。...
- DeepseekR1+ollama+dify1.0.0搭建企业/个人知识库(入门避坑版)
-
找了网上的视频和相关文档看了之后,可能由于版本不对或文档格式不对,很容易走弯路,看完这一章,可以让你少踩三天的坑。步骤和注意事项我一一列出来:1,前提条件是在你的电脑上已配置好ollama,dify1...
- 升级JDK17的理由,核心是降低GC时间
-
升级前后对比升级方法...
- 一个vsCode格式化插件_vscode格式化插件缩进量
-
ESlint...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)