146.人工智能——基于InsightFace(ONNX模型)人脸识别
ztj100 2024-11-21 00:30 38 浏览 0 评论
在前一章中,讲过RetinaFace的人脸检测,详情参看:145.人工智能——RetinaFace(ONNX模型)的人脸检测。
本文主要体验一下InsightFace(ONNX模型)人脸识别。CosFace-r34模型,下载地址:https://bj.bcebos.com/paddlehub/fastdeploy/glint360k_cosface_r34.onnx。
模型 | 大小 | 精度 (AgeDB_30) |
CosFace-r34 | 131MB | 98.3 |
在前期的文章中,有讲过基于face_recognition人脸检测与比对,详情可以参看:9.实时证照相片与人脸验证比对。效果还是非常不错,是返回人脸128个特征向量,通过计算欧氏距离来判断人脸的相似度。缺点就是安装dlib库比较麻烦。
而本文InsightFace的人脸比对是通过余弦相似度来判断。整个过程:
先检测人脸,对人脸图像大小预处理,再进行预测,根据预测的结果,提取人脸特征向量,再根据特征向量进行余弦相似度比对。
实现代码
import fastdeploy as fd
import cv2
import numpy as np
import facedet #人脸检测
# 余弦相似度
def cosine_similarity(a, b):
a = np.array(a)
b = np.array(b)
mul_a = np.linalg.norm(a, ord=2)
mul_b = np.linalg.norm(b, ord=2)
mul_ab = np.dot(a, b)
return mul_ab / (np.sqrt(mul_a) * np.sqrt(mul_b))
#处理人脸数据大小112*112,影响预测结果
def ResizeByLong(img,size=112):
img0=(np.ones((size,size,3))*255).astype(np.uint8)
h0,w0=img.shape[:2]
if h0>w0:
h=size
w=w0/h0*size
img=cv2.resize(img,[int(w),int(h)])
img0[0:h,(size-int(w))//2:int(w)+(size-int(w))//2]=img[:,:]
else:
w=size
h=h0/w0*size
img=cv2.resize(img,[int(w),int(h)])
img0[(size-int(h))//2:int(h)+(size-int(h))//2,0:int(w)]=img[:,:]
return img0
model_file="faceidmodel/glint360k_cosface_r34.onnx"
#加载模型
model = fd.vision.faceid.CosFace(model_file, runtime_option=None)
#检测人脸,返回人脸图像
face0=ResizeByLong(facedet.getface("img/000.jpg")) #0和1同一人
face1=ResizeByLong(facedet.getface("img/001.jpg"))
face2=ResizeByLong(facedet.getface("img/002.jpg")) #0和2不同一人
face=np.hstack((face0,face1,face2))
cv2.imshow("face",face)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 设置 l2 normalize
model.l2_normalize = True
# 预测图片检测结果
result0 = model.predict(face0)
result1 = model.predict(face1)
result2 = model.predict(face2)
# 计算余弦相似度
#人脸识别模型最终提取的特征embedding,可以用来计算人脸之间的特征相似度
embedding0 = result0.embedding
embedding1 = result1.embedding
embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2)
# 比对结果,可以设定一个阈值:0.6
print("Cosine 01: ", cosine01)
print("Cosine 02: ", cosine02)
#输出结果:余弦相似度比较
Cosine 01: 0.8792329727846468 #face0与face1 比较 大于0.6,是同一人
Cosine 02: 0.3351910102289668 #face0与face2 比较 小于0.6 不是同一人
说明:模型预测前,对获取到的人脸图像大小做了112*112处理。这个直接影响到后面的特征向量的结果。这一点和face_recognition相比,做得不够。
关于FastDeploy根据视觉模型的任务类型,定义了不同的结构体。访问结构体的方式:
结构体变量.成员变量.
如人脸识别:fastdeploy.vision.FaceRecognitionResult
- embedding(list of float): 成员变量,表示人脸识别模型最终提取的特征embedding,可以用来计算人脸之间的特征相似度。
获取result0的embedding的方式:embedding0 = result0.embedding
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)