numpy小记
ztj100 2024-11-21 00:30 16 浏览 0 评论
1.arange和range的区别
arange是np中的函数,返回的是一个数组
np.arange(5)
array([0, 1, 2, 3, 4])
range是Python自带的函数,返回的是一个迭代器
range(5)
range(0, 5)
2.
创建一个数组
选取数组元素
numpy数据类型,例如np.int16
获取数组中数据元素所占空间大小,使用a.dtype.itemsize属性
e
array([0, 1, 2, 3, 4, 5, 6])
e.dtype
dtype('int32')
e.dtype.itemsize
4
一位数组的切片和索引
reshape
a
array([1, 2, 3, 4, 5, 6])
b = a.reshape(2,3)
b
array([[1, 2, 3],
[4, 5, 6]])
a
array([1, 2, 3, 4, 5, 6])
reshape之后原数组是没有变化的
多维数组的索引和切片
b
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
b[0,0,0]
0
b[:,0,0]
array([ 0, 12])
b[0,1]
array([4, 5, 6, 7])
b[0,1,:]
array([4, 5, 6, 7])
改变数组的维度
1.ravel()
b.ravel()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])
2.flatten()
b.flatten()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])
revel和flatten都不会改变原数组
3.用元祖设置维度
b.shape=(6,4)
b.shape = (6,4)
b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]])
这样会改变原数组
4.矩阵转置
b.transpose()
array([[ 0, 4, 8, 12, 16, 20],
[ 1, 5, 9, 13, 17, 21],
[ 2, 6, 10, 14, 18, 22],
[ 3, 7, 11, 15, 19, 23]])
5.resize
resize和reshape功能一样,但resize会改变原数组
b.resize((2,12))
b
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
组合数组
水平组合:np.hstack((a,b))
垂直组合:np.vstack((a,b))
列组合:np.column_stack((a,b)),和水平组合效果一样
行组合:np.row_stack((a,b)),和垂直组合效果一样
a = np.arange(9).reshape(3,3)
a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
b = 2*a
b
array([[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
np.hstack((a,b))
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8, 10],
[ 6, 7, 8, 12, 14, 16]])
np.vstack((a,b))
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
np.column_stack((a,b))
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8, 10],
[ 6, 7, 8, 12, 14, 16]])
np.row_stack((a,b))
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
数组的属性
c.ndim:数组的维度
c.dize:数组的元素个数
c.itemsize:数组中元素所占内存的字节数
c.nbytes:整个数组所占的存储空间,就是size和itemsize属性值的乘积
T的属性效果和transpose函数一样
c
array([[[1, 2],
[3, 4],
[5, 6]]])
c.ndim
3
c.size
6
c.itemsize
4
c.nbytes
24
对于一维数组,其T属性就是原数组
b
array([1, 2, 3, 4, 5])
b.T
array([1, 2, 3, 4, 5])
遍历数组:
flat属性
b
array([[0, 1],
[2, 3]])
f = b.flat
for item in f :
print(item)#0 1 2 3
数组转换为列表,b.tolist()
改变数组元素类型,b.astype()
b
array([[0, 1],
[2, 3]])
b.tolist()
[[0, 1], [2, 3]]
b
array([[0, 1],
[2, 3]])
b.astype(float)
array([[ 0., 1.],
[ 2., 3.]])
b.astype('float')
array([[ 0., 1.],
[ 2., 3.]])
csv(Comma-Separated Value,逗号分隔值)
excel就可以另存为csv文件
import numpy as np
c,v = np.loadtxt('data.csv',delimiter=',',usecols=(6,7),unpack=True)#unpack=True表示返回多个结果
print(c,v)
#计算成交量加权平均价格
vwap = np.average(c,weights=v)
print(vwap)
#计算成交量价格算术平均值,使用mean和average函数都可以
_mean = np.mean(c)
print(_mean)
_mean2 = np.average(c)
print(_mean2)
h,l = np.loadtxt('data.csv',delimiter=',',usecols=(4,5),unpack=True)
#计算最大值
print(np.max(h))
#计算最小值
print(np.min(l))
#使用ptp函数计算数组的取值范围,返回数组元素的最大值和最小值之间的差距,也就是max(array)-min(array)
print(np.ptp(h))
print(np.max(h)-np.min(h))
print(np.ptp(l))
print(np.max(l)-np.min(l))
#简单统计分析
c = np.loadtxt('data.csv',delimiter=',',usecols=(6),unpack=True)
#计算数组中位数,奇数就是中间那个数,偶数就是中间两个数的平均值
median = np.median(c)
print(median)
#对数组进行排序,只对一维数组有效
sorted_c = np.msort(c)
#计算方差
variance = np.var(c)
print(variance)
variance_from_definition = np.mean((c-c.mean())**2)
print(variance_from_definition)
相关推荐
- 30天学会Python编程:16. Python常用标准库使用教程
-
16.1collections模块16.1.1高级数据结构16.1.2示例...
- 强烈推荐!Python 这个宝藏库 re 正则匹配
-
Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
-
Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
-
实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
-
我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...
- 深入理解re模块:Python中的正则表达式神器解析
-
在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
-
需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...
- 先Mark后用!8分钟读懂 Python 性能优化
-
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...
- Python“三步”即可爬取,毋庸置疑
-
声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
-
1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...
- Lavazza拉瓦萨再度牵手上海大师赛
-
阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...
- ArkUI-X构建Android平台AAR及使用
-
本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...
- Deepseek写歌详细教程(怎样用deepseek写歌功能)
-
以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...
- “AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测
-
“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...
- AI音乐制作神器揭秘!3款工具让你秒变高手
-
在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 30天学会Python编程:16. Python常用标准库使用教程
- 强烈推荐!Python 这个宝藏库 re 正则匹配
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
- 深入理解re模块:Python中的正则表达式神器解析
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
- 先Mark后用!8分钟读懂 Python 性能优化
- Python“三步”即可爬取,毋庸置疑
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)