147.Python——图像预处理操作:缩放和裁剪
ztj100 2024-11-21 00:30 19 浏览 0 评论
在人工智能计算机视觉任务中,经常需要对图像进行预处理操作,比如,在图像分类任务中,我们需要训练图像数据大小一般为:224*224,416*416等,但在实际给的图像数据大小并不是这样的大小,所以需要需要经过预处理。而在模型预测推理中,我们还需要把图像进行归一化处理。
以下面几张原始图像为例,来演示图像的预处理操作缩放和裁剪,图像来源于网络。
先把图像以短边缩放到224,再以中心裁剪成224*224大小。最后根据需要做归一化处理。
主要定义三个函数:
1、根据短边缩放:ResizeByShort
2、中心裁剪:CenterCrop
3、归一化:Normalize
实现代码
import cv2
import numpy as np
import os
#根据短边缩放
def ResizeByShort(img,size=224):
shortsize=min(img.shape[0],img.shape[1]) #取短边
scale=size/shortsize #缩放比
#计算缩放后的宽度
w=int(img.shape[1]*scale)
h=int(img.shape[0]*scale)
img=cv2.resize(img,(w,h))
return img
#中心裁剪正方形
def CenterCrop(img,size):
h,w=img.shape[:2]
w0=(w-size)//2
h0=(h-size)//2
img=img[h0:h0+size,w0:w0+size]
return img
#归一化操作,HWC=>NCWH
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
def Normalize(img,mean,std):
img=img.astype(np.float32)/255.
#BGR>RGB
img=img[:,:,::-1]
mean=np.array(mean).reshape(1,1,3).astype(np.float32)
std=np.array(std).reshape(1,1,3).astype(np.flat32)
img=(img-mean)/std
# img=np.expand_dims(img,axis=0)
# img=np.transpose(img,(0,3,1,2))
return img
imgnamelst=["7.jpg","16.jpg","80.jpg","104.jpg","d117.jpg"]
imglst=[]
for imgname in imgnamelst:
fimg=os.path.join("img",imgname)
img=cv2.imread(fimg)
#根据短边缩放
img=ResizeByShort(img,224)
#中心裁剪
img=CenterCrop(img,224)
imglst.append(img)
imgres=np.hstack(imglst) #图像拼接起来
#print(img.shape)
cv2.imshow("img",imgres)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果
- 上一篇:Python中numpy数据分析库知识点总结
- 下一篇:numpy小记
相关推荐
- 利用navicat将postgresql转为mysql
-
导航"拿来主义"吃得亏自己动手,丰衣足食...
- Navicat的详细教程「偷偷收藏」(navicatlite)
-
Navicat是一套快速、可靠并价格适宜的数据库管理工具,适用于三种平台:Windows、macOS及Linux。可以用来对本机或远程的MySQL、SQLServer、SQLite、...
- Linux系统安装SQL Server数据库(linux安装数据库命令)
-
一、官方说明...
- Navicat推出免费数据库管理软件Premium Lite
-
IT之家6月26日消息,Navicat推出一款免费的数据库管理开发工具——NavicatPremiumLite,针对入门级用户,支持基础的数据库管理和协同合作功能。▲Navicat...
- Docker安装部署Oracle/Sql Server
-
一、Docker安装Oracle12cOracle简介...
- Web性能的计算方式与优化方案(二)
-
通过前面《...
- 网络入侵检测系统之Suricata(十四)——匹配流程
-
其实规则的匹配流程和加载流程是强相关的,你如何组织规则那么就会采用该种数据结构去匹配,例如你用radixtree组织海量ip规则,那么匹配的时候也是采用bittest确定前缀节点,然后逐一左右子树...
- 使用deepseek写一个图片转换代码(deepnode处理图片)
-
写一个photoshop代码,要求:可以将文件夹里面的图片都处理成CMYK模式。软件版本:photoshop2022,然后生成的代码如下://Photoshop2022CMYK批量转换专业版脚...
- AI助力AUTOCAD,生成LSP插件(ai里面cad插件怎么使用)
-
以下是用AI生成的,用AUTOLISP语言编写的cad插件,分享给大家:一、将单线偏移为双线;;;;;;;;;;;;;;;;;;;;;;单线变双线...
- Core Audio音频基础概述(core 音乐)
-
1、CoreAudioCoreAudio提供了数字音频服务为iOS与OSX,它提供了一系列框架去处理音频....
- BlazorUI 组件库——反馈与弹层 (1)
-
组件是前端的基础。组件库也是前端框架的核心中的重点。组件库中有一个重要的板块:反馈与弹层!反馈与弹层在组件形态上,与Button、Input类等嵌入界面的组件有所不同,通常以层的形式出现。本篇文章...
- 怎样创建一个Xcode插件(xcode如何新建一个main.c)
-
译者:@yohunl译者注:原文使用的是xcode6.3.2,我翻译的时候,使用的是xcode7.2.1,经过验证,本部分中说的依然是有效的.在文中你可以学习到一系列的技能,非常值得一看.这些技能不单...
- 让SSL/TLS协议流行起来:深度解读SSL/TLS实现1
-
一前言SSL/TLS协议是网络安全通信的重要基石,本系列将简单介绍SSL/TLS协议,主要关注SSL/TLS协议的安全性,特别是SSL规范的正确实现。本系列的文章大体分为3个部分:SSL/TLS协...
- 社交软件开发6-客户端开发-ios端开发验证登陆部分
-
欢迎订阅我的头条号:一点热上一节说到,Android客户端的开发,主要是编写了,如何使用Androidstudio如何创建一个Android项目,已经使用gradle来加载第三方库,并且使用了异步...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 利用navicat将postgresql转为mysql
- Navicat的详细教程「偷偷收藏」(navicatlite)
- Linux系统安装SQL Server数据库(linux安装数据库命令)
- Navicat推出免费数据库管理软件Premium Lite
- Docker安装部署Oracle/Sql Server
- Docker安装MS SQL Server并使用Navicat远程连接
- Web性能的计算方式与优化方案(二)
- 网络入侵检测系统之Suricata(十四)——匹配流程
- 使用deepseek写一个图片转换代码(deepnode处理图片)
- AI助力AUTOCAD,生成LSP插件(ai里面cad插件怎么使用)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)