mindspore 版 AdaptiveAvgPool2d 替代方案参考
ztj100 2024-11-14 19:23 21 浏览 0 评论
前言
最近用 mindspore 复现 Fast SCNN 网络的时候,里面用到了一个自适应平均池化算子 “nn.AdaptiveAvgPool2d”,但是 mindspore 目前的版本还没有提供对应的算子供开发者使用,所以笔者查阅了一部分资料,了解了其计算原理。实验结果表明,下述方法可以替代 AdaptiveAvgPool2d 算子,可以此为基础迁移至其他 AI 框架(比如mindspore、tensorflow)中。
一、AdaptiveAvgPool2d
AdaptiveAvgPool2d 的功能简单来讲就是,开发者只需要传入“待处理数据” 和 “目标大小”,该算子会自动计算池化操作时的kernel_size和stride等数据,使得输出结果的shape为“目标大小”。
但其实上述理解是不完全正确的,甚至是错误的。基于此理解可以稍微理解其功能,但是如果想对其进行复现,则会完全陷入误区。
目前普遍存在的一种复现方式是,既然我们知道普通池化操作的计算过程是:
已知池化层的kernel_size、padding、stride 以及输入张量的大小input_size,则输出张量大小 output_size 为:
output_size =(input_size+2*padding-kernel_size)/stride +1
(此处简化了计算,如果输入张量的 column 值和 row 值不等,则分别计算)
那么我们就想办法通过 input_size 和 output_size 反推出 kernel_size、stride 等数值就好了,反向回去计算一定可以得到我们需要的数据。
但其实这种方法仅合其形,不对其意。我们只能使得输出张量是我们需要的“目标大小”,其内部数值却和 “nn.AdaptiveAvgPool2d” 的计算结果有不小差异,究其原因,在于出发点的错误。
二、AdaptiveAvgPool2d 计算原理
笔者翻阅了不少资料,最终在https://discuss.pytorch.org/t/what-is-adaptiveavgpool2d/26897 找到了我需要的内容。其中 Thomas 对AdaptiveAvgPool2d 做了相当准确的解释,我将其分享的代码改进为了 NCHW 的模式:
import torch.nn as nn
import torch
def torch_pool(inputs, target_size):
#NCHW
H = target_size[0]
W = target_size[1]
s_p1 = (torch.arange(W, dtype=torch.float32) * (inputs.size(-1) / W)).long()
e_p1 = ((torch.arange(W, dtype=torch.float32)+1) * (inputs.size(-1) / W)).ceil().long()
s_p2 = (torch.arange(H, dtype=torch.float32) * (inputs.size(-2) / H)).long()
e_p2 = ((torch.arange(H, dtype=torch.float32)+1) * (inputs.size(-2) / H)).ceil().long()
pooled2 = []
for i_H in range(H):
pooled = []
for i_W in range(W):
res = torch.mean(inputs[:, :, s_p2[i_H]:e_p2[i_H],s_p1[i_W]:e_p1[i_W]], dim=(-2,-1), keepdim=True)
pooled.append(res)
pooled = torch.cat(pooled, -1)
pooled2.append(pooled)
pooled2 = torch.cat(pooled2,-2)
return pooled2
if __name__ == '__main__':
data = [[[[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]]
,
[[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]]
]]
inputs = torch.tensor(data,dtype=torch.float32)
print(inputs)
print(inputs.size())
print("*********************************")
avgpool1 = torch_pool(inputs, (1,3))
avgpool2 = torch_pool(inputs, (2,3))
avgpool3 = torch_pool(inputs, (3,3))
avgpool6 = torch_pool(inputs, (6,5))
print(avgpool1)
print("*********************************")
print(avgpool2)
print("*********************************")
print(avgpool3)
print("*********************************")
print(avgpool6)
计算结果:
tensor([[[[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.]],
[[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.]]]])
torch.Size([1, 2, 6, 8])
*********************************
tensor([[[[3., 6., 8.]],
[[3., 6., 8.]]]])
*********************************
tensor([[[[3., 6., 8.],
[3., 6., 8.]],
[[3., 6., 8.],
[3., 6., 8.]]]])
*********************************
tensor([[[[3., 6., 8.],
[3., 6., 8.],
[3., 6., 8.]],
[[3., 6., 8.],
[3., 6., 8.],
[3., 6., 8.]]]])
*********************************
tensor([[[[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000]],
[[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000]]]])
与 pytorch 的 nn.AdaptiveAvgPool2d 算子进行对比验证:
import torch.nn as nn
import torch
if __name__ == '__main__':
data = [[[[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]]
,
[[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]
,[2,3,4,5,6,9,7,8]]
]]
x = torch.tensor(data,dtype=torch.float32)
print(x)
print(x.size())
print("*********************************")
avgpool1 = nn.AdaptiveAvgPool2d((1,3))
avgpool2 = nn.AdaptiveAvgPool2d((2,3))
avgpool3 = nn.AdaptiveAvgPool2d((3,3))
avgpool6 = nn.AdaptiveAvgPool2d((6,5))
print(avgpool1(x))
print("*********************************")
print(avgpool2(x))
print("*********************************")
print(avgpool3(x))
print("*********************************")
print(avgpool6(x))
计算结果:
tensor([[[[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.]],
[[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.],
[2., 3., 4., 5., 6., 9., 7., 8.]]]])
torch.Size([1, 2, 6, 8])
*********************************
tensor([[[[3., 6., 8.]],
[[3., 6., 8.]]]])
*********************************
tensor([[[[3., 6., 8.],
[3., 6., 8.]],
[[3., 6., 8.],
[3., 6., 8.]]]])
*********************************
tensor([[[[3., 6., 8.],
[3., 6., 8.],
[3., 6., 8.]],
[[3., 6., 8.],
[3., 6., 8.],
[3., 6., 8.]]]])
*********************************
tensor([[[[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000]],
[[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000],
[2.5000, 4.0000, 5.5000, 7.3333, 7.5000]]]])
可以发现,无论是输出 shape 还是 Tensor 内部数值,二者都是一样的。
而且无论改变 NCHW 的哪一部分内容,扩充 N、C、H、W 的任意一维,最后的计算结果都是保持一致的。
三、AdaptiveAvgPool2d 计算原理详解
待补充。
至此,探究明白了 “nn.AdaptiveAvgPool2d” 的内部计算原理。并可以此为基础迁移至其他 AI 框架中。
四、mindspore版 AdaptiveAvgPool2d
观察上述代码,如果要重写成mindspore版的代码,我们只需要替换掉‘torch.arange’、‘torch.mean’、‘torch.cat’这三个主要算子,以及添加一个取整操作,在mindspore中就是ops.ReduceMean(keep_dims=True)、P.Concat(axis=-1)等算子,只要做对应替换就可以了。
但我之前在重写 res = torch.mean(inputs[:, :, s_p2[i_H]:e_p2[i_H],s_p1[i_W]:e_p1[i_W]], dim=(-2,-1), keepdim=True)这一句时,发现mindspore对‘变量下标’做切片操作时会发生异常,不太清楚是不是我的用法有问题。不过我写了一个临时的版本,比如如果要将NCx32x64的数据池化成NCx6x6大小,我们可以提前计算出需要切片的下标,就可以得到这样一版可用的代码了:
def _AvgPool2d6x6(self,x):
s_p1 = [ 0, 10, 21, 32, 42, 53]
e_p1 = [11, 22, 32, 43, 54, 64]
s_p2 = [ 0, 5, 10, 16, 21, 26]
e_p2 = [ 6, 11, 16, 22, 27, 32]
pooled2 = []
for i_H in range(6):
pooled = []
for i_W in range(6):
res = self.reduceMean(x[:, :, s_p2[i_H]:e_p2[i_H],s_p1[i_W]:e_p1[i_W]], (-2,-1))
pooled.append(res)
pooled = self.concat1((pooled[0],pooled[1],pooled[2],pooled[3],pooled[4],pooled[5]))
pooled2.append(pooled)
pooled2 = self.concat2((pooled2[0],pooled2[1],pooled2[2],pooled2[3],pooled2[4],pooled2[5]))
return pooled2
原载于http://luxuff.cn ,作者还是我自己。
转载请注明出处。
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)