通过 Python 代码实现时间序列数据的统计学预测模型
ztj100 2024-11-10 13:13 17 浏览 0 评论
在本篇中,我们将展式使用 Python 统计学模型进行时间序列数据分析。
** 问题描述 **
目标:根据两年以上的每日广告支出历史数据,提前预测两个月的广告支出金额。
原始数据:2017-01-01 到 2019-09-23 期间的每日广告支出。
数据准备:划分训练集和测试集。
df1 = data[['Date','Spend']].set_index('Date')
train = df1.iloc[:933,:]
test = df1.iloc[933:,:]
test.shape,train.shape
测试集大小:(63,1);训练集大小:(933,1)。
本文目录
1. 综述
· 时间序列分析常用统计模型
· 单变量时间序列数据建模的关键要素
1. ARIMA
· ACF 和 PACF
· SARIMA
· 案例:通过 SARIMA 预测广告支出
1. ETS
· ETS
· Holt-Winter 季节性预测算法
· 案例:通过 Holt-Winter 季节性预测算法预测广告支出
1. 算法对比
1. 结束语
综述
时间序列分析常用统计模型
· 单变量时间序列统计学模型,如:平均方法、平滑方法、有/无季节性条件的 ARIMA 模型。
· 多变量时间序列统计学模型,如:外生回归变量、VAR。
· 附加或组件模型,如:Facebook Prophet、ETS。
· 结构化时间序列模型,如:贝叶斯结构化时间序列模型、分层时间序列模型。
在本篇文章中,我们主要关注 SARIMA 和 Holt-winters 方法。
单变量时间序列统计学模型的关键要素
如果我们想要对时间序列数据进行上述统计学模型分析,需要进行一系列处理使得:(1)数据均值 (2)数据方差 (3)数据自协方差 这三个指标不依赖于时间项。即时间序列数据具有平稳性。
如何明确时间序列数据是否具有平稳性?可以从两个特征进行判断。(1) 趋势,即均值随时间变化;(2) 季节性,即方差随时间变化、自协方差随时间变化。若满足以上两个条件,则时间序列数据不符合平稳性要求。
可以通过以下方法消除上述问题:
1. 变换,如:取对数、取平方等。
1. 平滑处理,如:移动平均等。
1. 差分。
1. 分解。
1. 多项式拟合,如:拟合回归。
ARIMA
Autoregressive Integrated Moving Average model (ARIMA),差分整合移动平均自回归模型。ARIMA(p,d,q)主要包含三项:
p:AR项,即自回归项(autoregression),将时间序列下一阶段描述为前一阶段数据的线性映射。 d项,即积分项(integration),时间序列的差分预处理步骤,使其满足平稳性要求 q:MA项,即移动平均项(moving average),将时间序列下一阶段描述为前一阶段数据平均过程中的残留误差的线性映射。
该模型需要指定 p d q 三项参数,并按照顺序执行。ARIMA 模型也可以用于开发 AR, MA 和 ARMA 模型。
ACF 和 PACF 图
自相关函数,autocorrelation function(ACF),描述了时间序列数据与其之后版本的相关性(如:Y(t) 与 Y(t-1) 之间的相关性)。
偏自相关函数,partial autocorrelation function(PACF),描述了各个序列的相关性。
1. 通过 PACF 图可以确定 p
1. 通过 ACF 图可以确定 q
SARIMA
季节性差分自回归滑动平均模型,seasonal autoregressive integrated moving averaging(SARIMA),在 ARIMA 模型的基础上进行了季节性调节。
其形式为:SARIMA(p,d,q)(P,D,Q)s,其中P,D,Q为季节参数,s为时间序列周期。
案例:通过 SARIMA 预测广告支出
首先,我们建立 test_stationarity 来检查时间序列数据的平稳性。
from statsmodels.tsa.stattools import adfuller
df1=df.resample('D', how=np.mean)
def test_stationarity(timeseries):
rolmean = timeseries.rolling(window=30).mean()
rolstd = timeseries.rolling(window=30).std()
plt.figure(figsize=(14,5))
sns.despine(left=True)
orig = plt.plot(timeseries, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best'); plt.title('Rolling Mean & Standard Deviation')
plt.show()
print ('<Results of Dickey-Fuller Test>')
dftest = adfuller(timeseries, autolag='AIC')
dfoutput = pd.Series(dftest[0:4],
index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
for key,value in dftest[4].items():
dfoutput['Critical Value (%s)'%key] = value
print(dfoutput)
test_stationarity(df1.Spend.dropna())
通过 test_stationarity 函数,可以绘制移动平均值以及标准差,并且通过 Augmented Dickey-Fuller test 输出 P 值。
对比临界值(critical value)可以看到,时间序列数据时非平稳的。
首先我们试试对数变换,能不能使数据达到平稳性要求。
可以看到,利用对数变换df1['log_Spend']=np.log(df1['Spend']),时间序列在阈值为5%时满足平稳性要求。
接下来,我们试试差分操作:test_stationarity(df1['Spend'].diff(1).dropna())。
显然,通过差分操作后,效果更好,时间序列在阈值为1%时满足平稳性要求。
然后,我们就可以建立 SARIMA 模型,并且预测 2019-07-23 到 2019-09-23 这两个月间每天的广告指出。
import statsmodels.api as sm
fit1 = sm.tsa.statespace.SARIMAX(train.Spend, order=(7, 1, 2), seasonal_order=(0, 1, 2, 7)).fit(use_boxcox=True)
test['SARIMA'] = fit1.predict(start="2019-07-23", end="2019-09-23", dynamic=True)
plt.figure(figsize=(16, 8))
plt.plot(train['Spend'], label='Train')
plt.plot(test['Spend'], label='Test')
plt.plot(test['SARIMA'], label='SARIMA')
plt.legend(loc='best')
plt.show()
现在,让我们通过从 sklearn.metrics 包导入 mean_squared_error,mean_absolute_error 函数计算 mse 和 mae 来检查这个模型的性能。结果如下:
进行数据可视化:
从 mse、mae 以及预测曲线可以看出,SARIMA 模型成功预测了时间序列变化趋势和季节性特征。但是在峰值处的表现仍旧有待提高。
ETS
ETS,Exponential Smoothing
由于时间序列数据随时间变化但具有一定的随机性,我们通常希望对数据进行平滑处理。为此,我们将使用 ETS 技术,通过指数方法为过去的数据分配较少的权重。同时将时间序列数据分解为趋势(T)、季节(S)和误差(E)分量。
三种常用 ETS 方法如下:
· Linear:双指数平滑;
· Additive:三指数平滑;
· Multiplicative:三指数平滑。
Holt-Winter 季节性预测算法
Holt-winter 季节性预测算法是一种三指数平滑方法。它包含三个主要部分:水平、趋势、季节性分量。
案例:通过 Holt-Winter 季节性预测算法预测广告支出
通过 Holt-winter 季节性预测算法预测 2019-07-23 到 2019-09-23 期间的每日广告支出,代码如下:
from statsmodels.tsa.api import ExponentialSmoothing
fit1 = ExponentialSmoothing(np.asarray(train['Spend']) ,seasonal_periods=7 ,trend='add', seasonal='add').fit(use_boxcox=True)
test['Holt_Winter'] = fit1.forecast(len(test))
plt.figure(figsize=(16,8))
plt.plot( train['Spend'], label='Train')
plt.plot(test['Spend'], label='Test')
plt.plot(test['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()
同样,我们通过 mean_squared_error,mean_absolute_error 函数查看 mse 和 mae。
可以看到,H-W 模型同样能够预测时间序列变化趋势和季节性特征。
算法对比
通过将两种算法的预测结果进行对比,可以评价哪种方法预测能力更好。
从图中可以看出,在MSE和MAE均较低的情况下,SARIMA模型的性能略优于Holt-Winter模型。尽管这两种模式都无法完美地抓住峰谷特征,但它们仍然对企业有用。根据数据,平均每月广告支出为2百万美元以上。而这两种算法的MAE大约在6000左右。换言之,对于一家平均每月广告支出为2百万美元的企业,两个月的广告支出预测误差只在6000美元左右,这是相当可观的。
结束语
在本文中,单变量预测方法在广告支出数据上表现良好。但这些方法难以组合/合并新的信号(如事件、天气)。同时这些方法对丢失数据也非常敏感,通常不能很好地预测很长一段时间。
而在下一篇文章中,我们将展示如何使用深度学习技术来预测同一数据集上的时间序列!
相关推荐
- 30天学会Python编程:16. Python常用标准库使用教程
-
16.1collections模块16.1.1高级数据结构16.1.2示例...
- 强烈推荐!Python 这个宝藏库 re 正则匹配
-
Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
-
Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
-
实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
-
我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...
- 深入理解re模块:Python中的正则表达式神器解析
-
在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
-
需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...
- 先Mark后用!8分钟读懂 Python 性能优化
-
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...
- Python“三步”即可爬取,毋庸置疑
-
声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
-
1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...
- Lavazza拉瓦萨再度牵手上海大师赛
-
阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...
- ArkUI-X构建Android平台AAR及使用
-
本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...
- Deepseek写歌详细教程(怎样用deepseek写歌功能)
-
以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...
- “AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测
-
“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...
- AI音乐制作神器揭秘!3款工具让你秒变高手
-
在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 30天学会Python编程:16. Python常用标准库使用教程
- 强烈推荐!Python 这个宝藏库 re 正则匹配
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
- 深入理解re模块:Python中的正则表达式神器解析
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
- 先Mark后用!8分钟读懂 Python 性能优化
- Python“三步”即可爬取,毋庸置疑
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)