百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

通过交叉验证构建可靠的机器学习模型

ztj100 2024-11-10 13:12 12 浏览 0 评论

交叉验证是一种用来衡量和评估机器学习模型性能的技术。在培训期间,我们创建了训练集的多个分区,并在这些分区的不同子集上进行训练/测试。

交叉验证经常用于为给定的数据集训练、测量和最终选择机器学习模型,因为它有助于评估模型的结果在实践中如何推广到独立的数据集。最重要的是,交叉验证已经被证明可以产生比其他方法更低的偏差的模型。

本教程将重点介绍交叉验证的一种变体,称为k-fold交叉验证。

在本教程中,我们将介绍以下内容:

  • 概述K-Fold交叉验证
  • 使用Scikit-Learn和com .ml的示例

K-fold交叉验证

交叉验证是一种重采样技术,用于评估有限数据集上的机器学习模型。

交叉验证的最常见用途是k-fold交叉验证方法。我们的训练集分为K个分区,模型在K-1分区上训练,测试误差在K分区上预测和计算。对每个唯一组重复此操作,并对测试错误进行平均。

步骤描述:

1.将训练集拆分为K(K = 10是常见选项)分区

对于每个分区:

2.设置分区是测试集

3.在其余分区上训练模型

4.测量测试集中的性能。

5.保留性能指标

6.探索不同folds的模型性能

交叉验证通常被使用,因为它易于解释,并且因为它通常导致比其他方法(例如简单的训练/测试拆分)更少偏差。使用交叉验证的最大缺点之一是增加了训练时间,因为我们基本上是训练K次而不是1次。

使用scikit-learn的交叉验证示例

Scikit-learn是一种流行的机器学习库,它还提供了许多用于数据采样,模型评估和训练的工具。我们将使用Kfold该类来生成folds。这是一个基本概述:

from sklearn.model_selection import KFold

X = [...] # My training dataset inputs/features

y = [...] # My training dataset targets

kf = KFold(n_splits=2)

kf.get_n_splits(X)

for train_index, test_index in kf.split(X):

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

model = train_model(X_train,y_train)

score = eval_model(X_test,y_test)

现在让我们使用scikit-learn和Comet.ml训练一个端到端的例子。

此示例在新闻组数据集上训练文本分类器(http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)。给定一段文本(字符串),模型将其分类为以下类之一:“atheism”,”christian”,”computer graphics”, “medicine”。Python代码如下:

from __future__ import print_function

from comet_ml import Experiment

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.pipeline import Pipeline

from sklearn.datasets import fetch_20newsgroups

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import KFold

import numpy as np

def convert_to_np(dataset):

return np.asarray(dataset.data), dataset.target

experiment = Experiment(api_key="YOUR KEY HERE", project_name="cross-validation")

experiment.set_name("20 newsgroups cross validated")

# Get dataset and put into train,test lists

categories = ['alt.atheism', 'soc.religion.christian',

'comp.graphics', 'sci.med']

x_validation,y_validation =convert_to_np(fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42))

x_train,y_train = convert_to_np(fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42))

kf = KFold(n_splits=10)

curr_fold = 0

acc_list = []

for train_idx, test_idx in kf.split(x_train):

text_clf = Pipeline([('vect', CountVectorizer()), # Counts occurrences of each word

('tfidf', TfidfTransformer()), # Normalize the counts based on document length

('clf', SGDClassifier(loss='hinge', penalty='l2', # Call classifier with vector

alpha=1e-3, random_state=42,

max_iter=5, tol=None)),

])

text_clf.fit(x_train[train_idx].tolist(), y_train[train_idx])

# Predict unseen test data based on fitted classifer

predicted = text_clf.predict(x_train[test_idx])

# Compute accuracy

acc = accuracy_score(y_train[test_idx].tolist(), predicted)

acc_list.append(acc)

experiment.log_metric("accuracy_fold_%s" % curr_fold, acc)

curr_fold += 1

experiment.log_metric("average accuracy", np.average(acc_list))

在每个fold上,我们向Comet.ml报告准确性,最后我们报告所有folds的平均准确度。实验结束后,我们可以访问Comet.ml并检查我们的模型(https://www.comet.ml/gidim/cross-validation/dd73c9696cbc497cb8274abcb883e03e/chart):

图表是由Comet.ml自动生成的。最右边的条形(紫色部分)表示folds的平均精度。正如您所看到的,一些folds前置形式明显优于平均值,并显示了k-fold交叉验证的重要性。

您可能已经注意到我们没有计算测试精度。在您完成所有实验之前,不应该以任何方式使用测试集。如果我们根据测试精度改变超参数或模型类型,我们实际上是将超参数过度拟合到测试分布。

相关推荐

Vue 技术栈(全家桶)(vue technology)

Vue技术栈(全家桶)尚硅谷前端研究院第1章:Vue核心Vue简介官网英文官网:https://vuejs.org/中文官网:https://cn.vuejs.org/...

vue 基础- nextTick 的使用场景(vue的nexttick这个方法有什么用)

前言《vue基础》系列是再次回炉vue记的笔记,除了官网那部分知识点外,还会加入自己的一些理解。(里面会有部分和官网相同的文案,有经验的同学择感兴趣的阅读)在开发时,是不是遇到过这样的场景,响应...

vue3 组件初始化流程(vue组件初始化顺序)

学习完成响应式系统后,咋们来看看vue3组件的初始化流程既然是看vue组件的初始化流程,咋们先来创建基本的代码,跑跑流程(在app.vue中写入以下内容,来跑流程)...

vue3优雅的设置element-plus的table自动滚动到底部

场景我是需要在table最后添加一行数据,然后把滚动条滚动到最后。查网上的解决方案都是读取html结构,暴力的去获取,虽能解决问题,但是不喜欢这种打补丁的解决方案,我想着官方应该有相关的定义,于是就去...

Vue3为什么推荐使用ref而不是reactive

为什么推荐使用ref而不是reactivereactive本身具有很大局限性导致使用过程需要额外注意,如果忽视这些问题将对开发造成不小的麻烦;ref更像是vue2时代optionapi的data的替...

9、echarts 在 vue 中怎么引用?(必会)

首先我们初始化一个vue项目,执行vueinitwebpackechart,接着我们进入初始化的项目下。安装echarts,npminstallecharts-S//或...

无所不能,将 Vue 渲染到嵌入式液晶屏

该文章转载自公众号@前端时刻,https://mp.weixin.qq.com/s/WDHW36zhfNFVFVv4jO2vrA前言...

vue-element-admin 增删改查(五)(vue-element-admin怎么用)

此篇幅比较长,涉及到的小知识点也比较多,一定要耐心看完,记住学东西没有耐心可不行!!!一、添加和修改注:添加和编辑用到了同一个组件,也就是此篇文章你能学会如何封装组件及引用组件;第二能学会async和...

最全的 Vue 面试题+详解答案(vue面试题知识点大全)

前言本文整理了...

基于 vue3.0 桌面端朋友圈/登录验证+60s倒计时

今天给大家分享的是Vue3聊天实例中的朋友圈的实现及登录验证和倒计时操作。先上效果图这个是最新开发的vue3.x网页端聊天项目中的朋友圈模块。用到了ElementPlus...

不来看看这些 VUE 的生命周期钩子函数?| 原力计划

作者|huangfuyk责编|王晓曼出品|CSDN博客VUE的生命周期钩子函数:就是指在一个组件从创建到销毁的过程自动执行的函数,包含组件的变化。可以分为:创建、挂载、更新、销毁四个模块...

Vue3.5正式上线,父传子props用法更丝滑简洁

前言Vue3.5在2024-09-03正式上线,目前在Vue官网显最新版本已经是Vue3.5,其中主要包含了几个小改动,我留意到日常最常用的改动就是props了,肯定是用Vue3的人必用的,所以针对性...

Vue 3 生命周期完整指南(vue生命周期及使用)

Vue2和Vue3中的生命周期钩子的工作方式非常相似,我们仍然可以访问相同的钩子,也希望将它们能用于相同的场景。...

救命!这 10 个 Vue3 技巧藏太深了!性能翻倍 + 摸鱼神器全揭秘

前端打工人集合!是不是经常遇到这些崩溃瞬间:Vue3项目越写越卡,组件通信像走迷宫,复杂逻辑写得脑壳疼?别慌!作为在一线摸爬滚打多年的老前端,今天直接甩出10个超实用的Vue3实战技巧,手把...

怎么在 vue 中使用 form 清除校验状态?

在Vue中使用表单验证时,经常需要清除表单的校验状态。下面我将介绍一些方法来清除表单的校验状态。1.使用this.$refs...

取消回复欢迎 发表评论: