百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python机器学习系列】一文教你绘制机器学习模型决策曲线

ztj100 2024-11-08 15:06 28 浏览 0 评论

这是我的第300篇原创文章。

一、引言

一个预测模型的输出通常为介于0到1之间的一个值(pi),根据事前确定的阈值概率(cutoff value, probability threshold, pt),当pi > pt时,判断为阳性;当pi < pt时,判断为阴性。因此,患者被分成了预测阳性而施加干预和预测阴性而不施加干预的两组。

在预测阳性组中,存在着真阳性病人(TP)和假阳性病人(FP)。显然,治疗真阳性病人会带来受益(benefits),而治疗假阳性病人会造成伤害(harms)。选择不同的阈值概率,会改变TP和FP的比值,从而受益和伤害的改变。为了同时考虑受益和伤害,决策曲线分析中,将模型的临床效用量化为净获益(net benefit)。

所谓决策曲线,即是以不同的probability threshold为横坐标,其所对应的net benefit为纵坐标,画出的曲线。绘制模型的决策曲线,我们只需要模型输出的每个样本的预测概率(y_pred_score) 和 每个样本真实的分类(y_label) 。

二、实现过程

2.1 读取数据

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)

2.2 提取目标变量和特征变量

target = 'target'
features = df.columns.drop(target)
X = df[features]
y = df[target]

2.3 划分数据集

X_train, X_test, y_train, y_test = train_test_split(df[features], df[[target]], test_size=0.2, random_state=0)

2.4 归一化

mm1 = MinMaxScaler()  # 特征进行归一化
X_train_m = mm1.fit_transform(X_train)
mm2 = MinMaxScaler()  # 标签进行归一化
y_train_m = mm2.fit_transform(y_train)

2.5 模型构建与训练

model = LogisticRegression()
model.fit(X_train_m, y_train_m)

2.6 模型推理

X_test_m = mm1.transform(X_test)  # 注意fit_transform() 和 transform()的区别
y_pred_m = model.predict(X_test_m)
y_scores = model.predict_proba(X_test_m)
y_pred = mm2.inverse_transform(np.reshape(y_pred_m, (-1, 1)))

2.7 绘制决策曲线

thresh_group = np.arange(0, 1, 0.05)
net_benefit_model = calculate_net_benefit_model(thresh_group, list(y_scores[:, 1]), y_test)
net_benefit_all = calculate_net_benefit_all(thresh_group, y_test)
fig, ax = plt.subplots()
ax = plot_DCA(ax, thresh_group, net_benefit_model, net_benefit_all)
plt.show()

结果:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python机器学习系列】一文教你绘制机器学习模型决策曲线-逻辑回归模型为例(案例+源码)

相关推荐

Jquery 详细用法

1、jQuery介绍(1)jQuery是什么?是一个js框架,其主要思想是利用jQuery提供的选择器查找要操作的节点,然后将找到的节点封装成一个jQuery对象。封装成jQuery对象的目的有...

前端开发79条知识点汇总

1.css禁用鼠标事件2.get/post的理解和他们之间的区别http超文本传输协议(HTTP)的设计目的是保证客户机与服务器之间的通信。HTTP的工作方式是客户机与服务器之间的请求-应答协议。...

js基础面试题92-130道题目

92.说说你对作用域链的理解参考答案:作用域链的作用是保证执行环境里有权访问的变量和函数是有序的,作用域链的变量只能向上访问,变量访问到window对象即被终止,作用域链向下访问变量是不被允许的。...

Web前端必备基础知识点,百万网友:牛逼

1、Web中的常见攻击方式1.SQL注入------常见的安全性问题。解决方案:前端页面需要校验用户的输入数据(限制用户输入的类型、范围、格式、长度),不能只靠后端去校验用户数据。一来可以提高后端处理...

事件——《JS高级程序设计》

一、事件流1.事件流描述的是从页面中接收事件的顺序2.事件冒泡(eventbubble):事件从开始时由最具体的元素(就是嵌套最深的那个节点)开始,逐级向上传播到较为不具体的节点(就是Docu...

前端开发中79条不可忽视的知识点汇总

过往一些不足的地方,通过博客,好好总结一下。1.css禁用鼠标事件...

Chrome 开发工具之Network

经常会听到比如"为什么我的js代码没执行啊?","我明明发送了请求,为什么反应?","我这个网站怎么加载的这么慢?"这类的问题,那么问题既然存在,就需要去解决它,需要解决它,首先我们得找对导致问题的原...

轻量级 React.js 虚拟美化滚动条组件RScroll

前几天有给大家分享一个Vue自定义滚动条组件VScroll。今天再分享一个最新开发的ReactPC端模拟滚动条组件RScroll。...

一文解读JavaScript事件对象和表单对象

前言相信做网站对JavaScript再熟悉不过了,它是一门脚本语言,不同于Python的是,它是一门浏览器脚本语言,而Python则是服务器脚本语言,我们不光要会Python,还要会JavaScrip...

Python函数参数黑科技:*args与**kwargs深度解析

90%的Python程序员不知道,可变参数设计竟能决定函数的灵活性和扩展性!掌握这些技巧,让你的函数适应任何场景!一、函数参数设计的三大进阶技巧...

深入理解Python3密码学:详解PyCrypto库加密、解密与数字签名

在现代计算领域,信息安全逐渐成为焦点话题。密码学,作为信息保护的关键技术之一,允许我们加密(保密)和解密(解密)数据。...

阿里Nacos惊爆安全漏洞,火速升级!(附修复建议)

前言好,我是threedr3am,我发现nacos最新版本1.4.1对于User-Agent绕过安全漏洞的serverIdentitykey-value修复机制,依然存在绕过问题,在nacos开启了...

Python模块:zoneinfo时区支持详解

一、知识导图二、知识讲解(一)zoneinfo模块概述...

Golang开发的一些注意事项(一)

1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...

Python鼠标与键盘自动化指南:从入门到进阶——键盘篇

`pynput`是一个用于控制和监控鼠标和键盘的Python库...

取消回复欢迎 发表评论: