百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python机器学习系列】一文教你绘制机器学习模型决策曲线

ztj100 2024-11-08 15:06 35 浏览 0 评论

这是我的第300篇原创文章。

一、引言

一个预测模型的输出通常为介于0到1之间的一个值(pi),根据事前确定的阈值概率(cutoff value, probability threshold, pt),当pi > pt时,判断为阳性;当pi < pt时,判断为阴性。因此,患者被分成了预测阳性而施加干预和预测阴性而不施加干预的两组。

在预测阳性组中,存在着真阳性病人(TP)和假阳性病人(FP)。显然,治疗真阳性病人会带来受益(benefits),而治疗假阳性病人会造成伤害(harms)。选择不同的阈值概率,会改变TP和FP的比值,从而受益和伤害的改变。为了同时考虑受益和伤害,决策曲线分析中,将模型的临床效用量化为净获益(net benefit)。

所谓决策曲线,即是以不同的probability threshold为横坐标,其所对应的net benefit为纵坐标,画出的曲线。绘制模型的决策曲线,我们只需要模型输出的每个样本的预测概率(y_pred_score) 和 每个样本真实的分类(y_label) 。

二、实现过程

2.1 读取数据

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)

2.2 提取目标变量和特征变量

target = 'target'
features = df.columns.drop(target)
X = df[features]
y = df[target]

2.3 划分数据集

X_train, X_test, y_train, y_test = train_test_split(df[features], df[[target]], test_size=0.2, random_state=0)

2.4 归一化

mm1 = MinMaxScaler()  # 特征进行归一化
X_train_m = mm1.fit_transform(X_train)
mm2 = MinMaxScaler()  # 标签进行归一化
y_train_m = mm2.fit_transform(y_train)

2.5 模型构建与训练

model = LogisticRegression()
model.fit(X_train_m, y_train_m)

2.6 模型推理

X_test_m = mm1.transform(X_test)  # 注意fit_transform() 和 transform()的区别
y_pred_m = model.predict(X_test_m)
y_scores = model.predict_proba(X_test_m)
y_pred = mm2.inverse_transform(np.reshape(y_pred_m, (-1, 1)))

2.7 绘制决策曲线

thresh_group = np.arange(0, 1, 0.05)
net_benefit_model = calculate_net_benefit_model(thresh_group, list(y_scores[:, 1]), y_test)
net_benefit_all = calculate_net_benefit_all(thresh_group, y_test)
fig, ax = plt.subplots()
ax = plot_DCA(ax, thresh_group, net_benefit_model, net_benefit_all)
plt.show()

结果:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python机器学习系列】一文教你绘制机器学习模型决策曲线-逻辑回归模型为例(案例+源码)

相关推荐

离谱!写了5年Vue,还不会自动化测试?

前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。Playwright是一个功能强大的端到...

package.json 与 package-lock.json 的关系

模块化开发在前端越来越流行,使用node和npm可以很方便的下载管理项目所需的依赖模块。package.json用来描述项目及项目所依赖的模块信息。那package-lock.json和...

Github 标星35k 的 SpringBoot整合acvtiviti开源分享,看完献上膝盖

前言activiti是目前比较流行的工作流框架,但是activiti学起来还是费劲,还是有点难度的,如何整合在线编辑器,如何和业务表单绑定,如何和系统权限绑定,这些问题都是要考虑到的,不是说纯粹的把a...

Vue3 + TypeScript 前端研发模板仓库

我们把这个Vue3+TypeScript前端研发模板仓库的初始化脚本一次性补全到可直接运行的状态,包括:完整的目录结构所有配置文件研发规范文档示例功能模块(ExampleFeature)...

Vue 2迁移Vue 3:从响应式到性能优化

小伙伴们注意啦!Vue2已经在2023年底正式停止维护,再不升级就要面临安全漏洞没人管的风险啦!而且Vue3带来的性能提升可不是一点点——渲染速度快40%,内存占用少一半,更新速度直接翻倍!还在...

VUE学习笔记:声明式渲染详解,对比WEB与VUE

声明式渲染是指使用简洁的模板语法,声明式的方式将数据渲染进DOM系统。声明式是相对于编程式而言,声明式是面向对象的,告诉框架做什么,具体操作由框架完成。编程式是面向过程思想,需要手动编写代码完成具...

苏州web前端培训班, 苏州哪里有web前端工程师培训

前端+HTML5德学习内容:第一阶段:前端页面重构:PC端网站布局、HTML5+CSS3基础项目、WebAPP页面布局;第二阶段:高级程序设计:原生交互功能开发、面向对象开发与ES5/ES6、工具库...

跟我一起开发微信小程序——扩展组件的代码提示补全

用户自定义代码块步骤:1.HBuilderX中工具栏:工具-代码块设置-vue代码块2.通过“1”步骤打开设置文件...

JimuReport 积木报表 v1.9.3发布,免费可视化报表

项目介绍积木报表JimuReport,是一款免费的数据可视化报表,含报表、大屏和仪表盘,像搭建积木一样完全在线设计!功能涵盖:数据报表、打印设计、图表报表、门户设计、大屏设计等!...

软开企服开源的无忧企业文档(V2.1.3)产品说明书

目录1....

一款面向 AI 的下一代富文本编辑器,已开源

简介AiEditor是一个面向AI的下一代富文本编辑器。开箱即用、支持所有前端框架、支持Markdown书写模式什么是AiEditor?AiEditor是一个面向AI的下一代富文本编辑...

玩转Markdown(2)——抽象语法树的提取与操纵

上一篇玩转Markdown——数据的分离存储与组件的原生渲染发布,转眼已经鸽了大半年了。最近在操纵mdast生成md文件的时候,心血来潮,把玩转Markdown(2)给补上了。...

DeepseekR1+ollama+dify1.0.0搭建企业/个人知识库(入门避坑版)

找了网上的视频和相关文档看了之后,可能由于版本不对或文档格式不对,很容易走弯路,看完这一章,可以让你少踩三天的坑。步骤和注意事项我一一列出来:1,前提条件是在你的电脑上已配置好ollama,dify1...

升级JDK17的理由,核心是降低GC时间

升级前后对比升级方法...

一个vsCode格式化插件_vscode格式化插件缩进量

ESlint...

取消回复欢迎 发表评论: