百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python时序预测系列】一文搞明白时序数据输入到LSTM模型的格式

ztj100 2024-11-08 15:06 31 浏览 0 评论

这是我的第276篇原创文章。

一、引言

前面我介绍了多个方法实现单变量和多变量时序数据的单站点单步预测,好多小伙伴最近问我这个LSTM模型数据的输入的格式是怎么样的,今天我专门写一篇文章来聊一聊这个问题,希望对大家有所启发和帮助。

二、实现过程

2.1 单变量时序数据

1、原始data

原始数据是一个144行1列的(144,1)的dataframe:

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(115,1)的二维数组:

3、创建滑动窗口数据集

将train_data_scaler集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为12,i的范围0-102,103取不到:

当i=0时,取出train_data_scaler第【1-12】行第【1】列的12条数据作为X_train[0],取出train_data_scaler第【13】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-13】行第【1】列的12条数据作为X_train[1],取出train_data_scaler第【14】行第【1】列的1条数据作为Y_train[1];

...

当i=102时,取出train_data_scaler第【103-114】行第【1】列的12条数据作为X_train[102],取出train_data_scaler第【115】行第【1】列的1条数据作为Y_train[102];

返回的X_train是一个(103,12,1)的三维数组;Y_train是一个(103,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(103,12,1)的三维数组,三个维度分别表示(样本数,时间步长,特征数)
  • Y_train是一个(103,1)的二维数组,两个维度分别表示(样本数,标签)
  • 类似一个103行(12*1+1)列的表格,前(12*1)列是特征,第(12*1+1)列是标签

2.2 多变量时序数据

1、原始的data

是一个(5203,5)的dataframe:

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(4162,5)的二维数组:

3、创建滑动窗口数据集

将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为30,i的范围0-4131:

当i=0时,取出train_data_scaler第【1-30】行第【1-5】列的12条数据作为X_train[0],取出train_data_scaler第【31】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-31】行第【1-5】列的12条数据作为X_train[1],取出train_data_scaler第【32】行第【1】列的1条数据作为Y_train[1];

...

当i=4131时,取出train_data_scaler第【4132-4161】行第【1-5】列的12条数据作为X_train[4131],取出train_data_scaler第【4162】行第【1】列的1条数据作为Y_train[4131];

返回的X_train是一个(4132,30,5)的三维数组;Y_train是一个(4132,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 5)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 5)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(4132,30,5)的三维数组;(样本数,时间步长,特征数)
  • Y_train是一个(4132,1)的二维数组;(样本数,标签)
  • 类似一个4132行(30*5+1)列的表格,前(30*5)列是特征,第(30*5+1)列是标签

三、小结

由于滑动窗口,实际的训练数据数量少一个窗口数量,实际能预测的数据量也少一个窗口数量。

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python时序预测系列】一文搞明白时序数据输入到LSTM模型的格式(案例解读)

相关推荐

sharding-jdbc实现`分库分表`与`读写分离`

一、前言本文将基于以下环境整合...

三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么

在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...

MySQL8行级锁_mysql如何加行级锁

MySQL8行级锁版本:8.0.34基本概念...

mysql使用小技巧_mysql使用入门

1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...

MySQL/MariaDB中如何支持全部的Unicode?

永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...

聊聊 MySQL Server 可执行注释,你懂了吗?

前言MySQLServer当前支持如下3种注释风格:...

MySQL系列-源码编译安装(v5.7.34)

一、系统环境要求...

MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了

对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...

MySQL字符问题_mysql中字符串的位置

中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...

深圳尚学堂:mysql基本sql语句大全(三)

数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...

MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?

大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...

一文讲清怎么利用Python Django实现Excel数据表的导入导出功能

摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...

用DataX实现两个MySQL实例间的数据同步

DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...

MySQL数据库知识_mysql数据库基础知识

MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...

如何为MySQL中的JSON字段设置索引

背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...

取消回复欢迎 发表评论: