百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

怎样利用VGG实现手写数字识别?(手写数字识别技术)

ztj100 2024-11-08 15:06 29 浏览 0 评论

VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积(3×3),其网络架构如下图所示:

VGGNet使用的全部都是3x3的小卷积核和2x2的池化核,通过不断加深网络来提升性能。VGG可以通过重复使用简单的基础块来构建深度模型。

在tf.keras中实现VGG模型,首先来实现VGG块,它的组成规律是:连续使用多个相同的填充为1、卷积核大小为3×33×3的卷积层后接上一个步幅为2、窗口形状为2×22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量num_convs和每层的卷积核个数num_filters:

# 定义VGG网络中的卷积块:卷积层的个数,卷积层中卷积核的个数def vgg_block(num_convs, num_filters):
    # 构建序列模型
    blk = tf.keras.models.Sequential()
    # 遍历所有的卷积层
    for _ in range(num_convs):
        # 每个卷积层:num_filter个卷积核,卷积核大小为3*3,padding是same,激活函数是relu
        blk.add(tf.keras.layers.Conv2D(num_filters,kernel_size=3,
                                    padding='same',activation='relu'))
    # 卷积块最后是一个最大池化,窗口大小为2*2,步长为2
    blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
    return blk

VGG16网络有5个卷积块,前2块使用两个卷积层,而后3块使用三个卷积层。第一块的输出通道是64,之后每次对输出通道数翻倍,直到变为512。

# 定义5个卷积块,指明每个卷积块中的卷积层个数及相应的卷积核个数
conv_arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512))

因为这个网络使用了13个卷积层和3个全连接层,所以经常被称为VGG-16,通过制定conv_arch得到模型架构后构建VGG16:

# 定义VGG网络def vgg(conv_arch):
    # 构建序列模型
    net = tf.keras.models.Sequential()
    # 根据conv_arch生成卷积部分
    for (num_convs, num_filters) in conv_arch:
        net.add(vgg_block(num_convs, num_filters))
    # 卷积块序列后添加全连接层
    net.add(tf.keras.models.Sequential([
        # 将特征图展成一维向量
        tf.keras.layers.Flatten(),
        # 全连接层:4096个神经元,激活函数是relu
        tf.keras.layers.Dense(4096, activation='relu'),
        # 随机失活
        tf.keras.layers.Dropout(0.5),
        # 全连接层:4096个神经元,激活函数是relu
        tf.keras.layers.Dense(4096, activation='relu'),
        # 随机失活
        tf.keras.layers.Dropout(0.5),
        # 全连接层:10个神经元,激活函数是softmax
        tf.keras.layers.Dense(10, activation='softmax')]))
    return net# 网络实例化net = vgg(conv_arch)

我们构造一个高和宽均为224的单通道数据样本来看一下模型的架构:

# 构造输入X,并将其送入到net网络中
X = tf.random.uniform((1,224,224,1))
y = net(X)
# 通过net.summay()查看网络的形状
net.summay()

网络架构如下:

Model: "sequential_15"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
sequential_16 (Sequential)   (1, 112, 112, 64)         37568     
_________________________________________________________________
sequential_17 (Sequential)   (1, 56, 56, 128)          221440    
_________________________________________________________________
sequential_18 (Sequential)   (1, 28, 28, 256)          1475328   
_________________________________________________________________
sequential_19 (Sequential)   (1, 14, 14, 512)          5899776   
_________________________________________________________________
sequential_20 (Sequential)   (1, 7, 7, 512)            7079424   
_________________________________________________________________
sequential_21 (Sequential)   (1, 10)                   119586826 
=================================================================
Total params: 134,300,362
Trainable params: 134,300,362
Non-trainable params: 0
__________________________________________________________________

手写数字势识别

因为ImageNet数据集较大训练时间较长,我们仍用前面的MNIST数据集来演示VGGNet。读取数据的时将图像高和宽扩大到VggNet使用的图像高和宽224。这个通过tf.image.resize_with_pad来实现。

import numpy as np
# 获取手写数字数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 训练集数据维度的调整:N H W C
train_images = np.reshape(train_images,(train_images.shape[0],train_images.shape[1],train_images.shape[2],1))
# 测试集数据维度的调整:N H W C
test_images = np.reshape(test_images,(test_images.shape[0],test_images.shape[1],test_images.shape[2],1))

由于使用全部数据训练时间较长,我们定义两个方法获取部分数据,并将图像调整为224*224大小,进行模型训练:

# 定义两个方法随机抽取部分样本演示# 获取训练集数据def get_train(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(train_images)[0], size)
    # 将这些数据resize成22*227大小
    resized_images = tf.image.resize_with_pad(train_images[index],224,224,)
    # 返回抽取的
    return resized_images.numpy(), train_labels[index]# 获取测试集数据 def get_test(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(test_images)[0], size)
    # 将这些数据resize成224*224大小
    resized_images = tf.image.resize_with_pad(test_images[index],224,224,)
    # 返回抽样的测试样本
    return resized_images.numpy(), test_labels[index]

调用上述两个方法,获取参与模型训练和测试的数据集:

# 获取训练样本和测试样本
train_images,train_labels = get_train(256)
test_images,test_labels = get_test(128)

为了让大家更好的理解,我们将数据展示出来:

# 数据展示:将数据集的前九个数据集进行展示
for i in range(9):
    plt.subplot(3,3,i+1)
    # 以灰度图显示,不进行插值
    plt.imshow(train_images[i].astype(np.int8).squeeze(), cmap='gray', interpolation='none')
    # 设置图片的标题:对应的类别
    plt.title("数字{}".format(train_labels[i]))

结果为:

相关推荐

Jquery 详细用法

1、jQuery介绍(1)jQuery是什么?是一个js框架,其主要思想是利用jQuery提供的选择器查找要操作的节点,然后将找到的节点封装成一个jQuery对象。封装成jQuery对象的目的有...

前端开发79条知识点汇总

1.css禁用鼠标事件2.get/post的理解和他们之间的区别http超文本传输协议(HTTP)的设计目的是保证客户机与服务器之间的通信。HTTP的工作方式是客户机与服务器之间的请求-应答协议。...

js基础面试题92-130道题目

92.说说你对作用域链的理解参考答案:作用域链的作用是保证执行环境里有权访问的变量和函数是有序的,作用域链的变量只能向上访问,变量访问到window对象即被终止,作用域链向下访问变量是不被允许的。...

Web前端必备基础知识点,百万网友:牛逼

1、Web中的常见攻击方式1.SQL注入------常见的安全性问题。解决方案:前端页面需要校验用户的输入数据(限制用户输入的类型、范围、格式、长度),不能只靠后端去校验用户数据。一来可以提高后端处理...

事件——《JS高级程序设计》

一、事件流1.事件流描述的是从页面中接收事件的顺序2.事件冒泡(eventbubble):事件从开始时由最具体的元素(就是嵌套最深的那个节点)开始,逐级向上传播到较为不具体的节点(就是Docu...

前端开发中79条不可忽视的知识点汇总

过往一些不足的地方,通过博客,好好总结一下。1.css禁用鼠标事件...

Chrome 开发工具之Network

经常会听到比如"为什么我的js代码没执行啊?","我明明发送了请求,为什么反应?","我这个网站怎么加载的这么慢?"这类的问题,那么问题既然存在,就需要去解决它,需要解决它,首先我们得找对导致问题的原...

轻量级 React.js 虚拟美化滚动条组件RScroll

前几天有给大家分享一个Vue自定义滚动条组件VScroll。今天再分享一个最新开发的ReactPC端模拟滚动条组件RScroll。...

一文解读JavaScript事件对象和表单对象

前言相信做网站对JavaScript再熟悉不过了,它是一门脚本语言,不同于Python的是,它是一门浏览器脚本语言,而Python则是服务器脚本语言,我们不光要会Python,还要会JavaScrip...

Python函数参数黑科技:*args与**kwargs深度解析

90%的Python程序员不知道,可变参数设计竟能决定函数的灵活性和扩展性!掌握这些技巧,让你的函数适应任何场景!一、函数参数设计的三大进阶技巧...

深入理解Python3密码学:详解PyCrypto库加密、解密与数字签名

在现代计算领域,信息安全逐渐成为焦点话题。密码学,作为信息保护的关键技术之一,允许我们加密(保密)和解密(解密)数据。...

阿里Nacos惊爆安全漏洞,火速升级!(附修复建议)

前言好,我是threedr3am,我发现nacos最新版本1.4.1对于User-Agent绕过安全漏洞的serverIdentitykey-value修复机制,依然存在绕过问题,在nacos开启了...

Python模块:zoneinfo时区支持详解

一、知识导图二、知识讲解(一)zoneinfo模块概述...

Golang开发的一些注意事项(一)

1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...

Python鼠标与键盘自动化指南:从入门到进阶——键盘篇

`pynput`是一个用于控制和监控鼠标和键盘的Python库...

取消回复欢迎 发表评论: