怎样利用VGG实现手写数字识别?(手写数字识别技术)
ztj100 2024-11-08 15:06 24 浏览 0 评论
VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积(3×3),其网络架构如下图所示:
VGGNet使用的全部都是3x3的小卷积核和2x2的池化核,通过不断加深网络来提升性能。VGG可以通过重复使用简单的基础块来构建深度模型。
在tf.keras中实现VGG模型,首先来实现VGG块,它的组成规律是:连续使用多个相同的填充为1、卷积核大小为3×33×3的卷积层后接上一个步幅为2、窗口形状为2×22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量num_convs和每层的卷积核个数num_filters:
# 定义VGG网络中的卷积块:卷积层的个数,卷积层中卷积核的个数def vgg_block(num_convs, num_filters):
# 构建序列模型
blk = tf.keras.models.Sequential()
# 遍历所有的卷积层
for _ in range(num_convs):
# 每个卷积层:num_filter个卷积核,卷积核大小为3*3,padding是same,激活函数是relu
blk.add(tf.keras.layers.Conv2D(num_filters,kernel_size=3,
padding='same',activation='relu'))
# 卷积块最后是一个最大池化,窗口大小为2*2,步长为2
blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
return blk
VGG16网络有5个卷积块,前2块使用两个卷积层,而后3块使用三个卷积层。第一块的输出通道是64,之后每次对输出通道数翻倍,直到变为512。
# 定义5个卷积块,指明每个卷积块中的卷积层个数及相应的卷积核个数
conv_arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512))
因为这个网络使用了13个卷积层和3个全连接层,所以经常被称为VGG-16,通过制定conv_arch得到模型架构后构建VGG16:
# 定义VGG网络def vgg(conv_arch):
# 构建序列模型
net = tf.keras.models.Sequential()
# 根据conv_arch生成卷积部分
for (num_convs, num_filters) in conv_arch:
net.add(vgg_block(num_convs, num_filters))
# 卷积块序列后添加全连接层
net.add(tf.keras.models.Sequential([
# 将特征图展成一维向量
tf.keras.layers.Flatten(),
# 全连接层:4096个神经元,激活函数是relu
tf.keras.layers.Dense(4096, activation='relu'),
# 随机失活
tf.keras.layers.Dropout(0.5),
# 全连接层:4096个神经元,激活函数是relu
tf.keras.layers.Dense(4096, activation='relu'),
# 随机失活
tf.keras.layers.Dropout(0.5),
# 全连接层:10个神经元,激活函数是softmax
tf.keras.layers.Dense(10, activation='softmax')]))
return net# 网络实例化net = vgg(conv_arch)
我们构造一个高和宽均为224的单通道数据样本来看一下模型的架构:
# 构造输入X,并将其送入到net网络中
X = tf.random.uniform((1,224,224,1))
y = net(X)
# 通过net.summay()查看网络的形状
net.summay()
网络架构如下:
Model: "sequential_15"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential_16 (Sequential) (1, 112, 112, 64) 37568
_________________________________________________________________
sequential_17 (Sequential) (1, 56, 56, 128) 221440
_________________________________________________________________
sequential_18 (Sequential) (1, 28, 28, 256) 1475328
_________________________________________________________________
sequential_19 (Sequential) (1, 14, 14, 512) 5899776
_________________________________________________________________
sequential_20 (Sequential) (1, 7, 7, 512) 7079424
_________________________________________________________________
sequential_21 (Sequential) (1, 10) 119586826
=================================================================
Total params: 134,300,362
Trainable params: 134,300,362
Non-trainable params: 0
__________________________________________________________________
手写数字势识别
因为ImageNet数据集较大训练时间较长,我们仍用前面的MNIST数据集来演示VGGNet。读取数据的时将图像高和宽扩大到VggNet使用的图像高和宽224。这个通过tf.image.resize_with_pad来实现。
import numpy as np
# 获取手写数字数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 训练集数据维度的调整:N H W C
train_images = np.reshape(train_images,(train_images.shape[0],train_images.shape[1],train_images.shape[2],1))
# 测试集数据维度的调整:N H W C
test_images = np.reshape(test_images,(test_images.shape[0],test_images.shape[1],test_images.shape[2],1))
由于使用全部数据训练时间较长,我们定义两个方法获取部分数据,并将图像调整为224*224大小,进行模型训练:
# 定义两个方法随机抽取部分样本演示# 获取训练集数据def get_train(size):
# 随机生成要抽样的样本的索引
index = np.random.randint(0, np.shape(train_images)[0], size)
# 将这些数据resize成22*227大小
resized_images = tf.image.resize_with_pad(train_images[index],224,224,)
# 返回抽取的
return resized_images.numpy(), train_labels[index]# 获取测试集数据 def get_test(size):
# 随机生成要抽样的样本的索引
index = np.random.randint(0, np.shape(test_images)[0], size)
# 将这些数据resize成224*224大小
resized_images = tf.image.resize_with_pad(test_images[index],224,224,)
# 返回抽样的测试样本
return resized_images.numpy(), test_labels[index]
调用上述两个方法,获取参与模型训练和测试的数据集:
# 获取训练样本和测试样本
train_images,train_labels = get_train(256)
test_images,test_labels = get_test(128)
为了让大家更好的理解,我们将数据展示出来:
# 数据展示:将数据集的前九个数据集进行展示
for i in range(9):
plt.subplot(3,3,i+1)
# 以灰度图显示,不进行插值
plt.imshow(train_images[i].astype(np.int8).squeeze(), cmap='gray', interpolation='none')
# 设置图片的标题:对应的类别
plt.title("数字{}".format(train_labels[i]))
结果为:
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)