百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

能量空间物质相互转化途径(能量与空间转换相对论公式)

ztj100 2025-07-09 00:28 2 浏览 0 评论

代码实现

<!DOCTYPE html>

<html lang="zh">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>几何统一理论 - 增强标注版</title>

<style>

* {

margin: 0;

padding: 0;

box-sizing: border-box;

font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

}


body {

background: linear-gradient(135deg, #0f0c29, #1a1a40, #0d0d26);

color: #e0e0ff;

min-height: 100vh;

overflow-x: hidden;

padding: 20px;

line-height: 1.6;

}


.container {

max-width: 1200px;

margin: 0 auto;

}


header {

text-align: center;

padding: 20px 0;

margin-bottom: 30px;

border-bottom: 2px solid rgba(100, 150, 255, 0.4);

position: relative;

}


h1 {

font-size: 3.2rem;

margin-bottom: 15px;

background: linear-gradient(90deg, #ff7eee, #7ebcff, #4dffea);

-webkit-background-clip: text;

-webkit-text-fill-color: transparent;

text-shadow: 0 0 20px rgba(126, 188, 255, 0.4);

letter-spacing: 1px;

}


.subtitle {

font-size: 1.4rem;

margin-top: 15px;

max-width: 800px;

margin: 15px auto 0;

color: #a0c4ff;

}


.content {

display: flex;

flex-wrap: wrap;

gap: 30px;

margin-bottom: 40px;

}


.canvas-container {

flex: 1;

min-width: 300px;

background: rgba(10, 15, 35, 0.6);

border-radius: 20px;

padding: 20px;

box-shadow: 0 15px 35px rgba(0, 0, 0, 0.6);

border: 2px solid rgba(100, 150, 255, 0.3);

position: relative;

overflow: hidden;

}


.controls {

width: 350px;

background: rgba(15, 20, 45, 0.85);

border-radius: 20px;

padding: 25px;

box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5);

border: 2px solid rgba(100, 150, 255, 0.3);

}


canvas {

background: #0a0f20;

border-radius: 15px;

width: 100%;

height: 500px;

display: block;

}


.panel-title {

font-size: 1.6rem;

margin-bottom: 25px;

color: #7ebcff;

text-align: center;

padding-bottom: 15px;

border-bottom: 2px solid rgba(100, 150, 255, 0.3);

}


.control-group {

margin-bottom: 30px;

padding: 15px;

background: rgba(20, 25, 60, 0.4);

border-radius: 12px;

}


.control-label {

display: flex;

justify-content: space-between;

margin-bottom: 12px;

font-size: 1.1rem;

align-items: center;

}


.icon {

font-size: 1.3rem;

margin-right: 10px;

}


.slider-container {

margin: 15px 0;

}


input[type="range"] {

width: 100%;

height: 10px;

background: linear-gradient(90deg, #1e1b4b, #7ebcff);

border-radius: 5px;

outline: none;

-webkit-appearance: none;

}


input[type="range"]::-webkit-slider-thumb {

-webkit-appearance: none;

width: 24px;

height: 24px;

border-radius: 50%;

background: #ff7eee;

cursor: pointer;

box-shadow: 0 0 15px rgba(255, 126, 238, 0.8);

border: 2px solid white;

}


.value-display {

font-size: 1rem;

text-align: center;

margin-top: 10px;

color: #7ebcff;

font-style: italic;

}


.button-group {

display: flex;

gap: 15px;

margin-top: 20px;

flex-wrap: wrap;

}


button {

flex: 1;

min-width: 120px;

padding: 12px;

border: none;

border-radius: 8px;

background: linear-gradient(90deg, #1e1b4b, #5e60ce);

color: white;

font-weight: 600;

font-size: 1rem;

cursor: pointer;

transition: all 0.3s ease;

box-shadow: 0 5px 15px rgba(0, 0, 0, 0.4);

display: flex;

align-items: center;

justify-content: center;

gap: 8px;

}


button:hover {

transform: translateY(-3px);

box-shadow: 0 8px 20px rgba(126, 188, 255, 0.5);

}


button:active {

transform: translateY(1px);

}


.reset-btn {

background: linear-gradient(90deg, #63302b, #e63946);

}


.theory-explanation {

margin-top: 40px;

background: rgba(10, 15, 35, 0.7);

border-radius: 20px;

padding: 30px;

box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5);

border: 2px solid rgba(100, 150, 255, 0.3);

}


.theory-explanation h2 {

color: #7ebcff;

margin-bottom: 25px;

text-align: center;

font-size: 2rem;

}


.theory-points {

display: flex;

flex-wrap: wrap;

gap: 25px;

margin-top: 20px;

}


.point {

flex: 1;

min-width: 250px;

background: rgba(20, 30, 60, 0.7);

padding: 20px;

border-radius: 15px;

border-left: 4px solid #ff7eee;

transition: transform 0.3s ease;

}


.point:hover {

transform: translateY(-5px);

box-shadow: 0 10px 25px rgba(126, 188, 255, 0.2);

}


.point h3 {

color: #ff7eee;

margin-bottom: 15px;

font-size: 1.3rem;

display: flex;

align-items: center;

gap: 10px;

}


.formula {

font-family: 'Cambria', serif;

font-style: italic;

text-align: center;

margin: 20px 0;

padding: 15px;

background: rgba(0, 0, 0, 0.3);

border-radius: 10px;

border: 2px solid rgba(100, 150, 255, 0.2);

font-size: 1.3rem;

color: #a0c4ff;

}


footer {

text-align: center;

margin-top: 50px;

padding: 25px;

font-size: 1rem;

opacity: 0.8;

border-top: 2px solid rgba(100, 150, 255, 0.3);

color: #a0c4ff;

}


@media (max-width: 768px) {

.content {

flex-direction: column;

}


.controls {

width: 100%;

}


h1 {

font-size: 2.4rem;

}

}


.legend {

position: absolute;

top: 20px;

right: 20px;

background: rgba(15, 20, 45, 0.85);

padding: 15px;

border-radius: 10px;

border: 2px solid rgba(100, 150, 255, 0.3);

z-index: 10;

}


.legend-item {

display: flex;

align-items: center;

margin-bottom: 10px;

}


.legend-color {

width: 20px;

height: 20px;

border-radius: 50%;

margin-right: 10px;

}


.energy-color { background: #ff3860; }

.space-color { background: #4d8aff; }

.matter-color { background: #b967ff; }

.generator-color { background: #ffffff; }

.connection-color { background: #ffd166; }

</style>

</head>

<body>

<div class="container">

<header>

<h1>几何统一理论可视化模拟器</h1>

<p class="subtitle">清晰标注版:直观展示能量、空间与物质的几何本质及其相互转化关系</p>

</header>


<div class="content">

<div class="canvas-container">

<h2 class="panel-title">宇宙几何画布(元素标注版)</h2>


<div class="legend">

<h3>图例说明</h3>

<div class="legend-item">

<div class="legend-color generator-color"></div>

<span>几何生成元 (G)</span>

</div>

<div class="legend-item">

<div class="legend-color connection-color"></div>

<span>代谢联络 (Γ)</span>

</div>

<div class="legend-item">

<div class="legend-color energy-color"></div>

<span>能量 (E)</span>

</div>

<div class="legend-item">

<div class="legend-color space-color"></div>

<span>空间 (S)</span>

</div>

<div class="legend-item">

<div class="legend-color matter-color"></div>

<span>物质 (M)</span>

</div>

</div>


<canvas id="universeCanvas"></canvas>

</div>


<div class="controls">

<h2 class="panel-title">理论控制面板</h2>


<div class="control-group">

<div class="control-label">

<span><span class="icon">ω</span>几何势 (ω)</span>

<span id="omega-value">0.75</span>

</div>

<div class="slider-container">

<input type="range" id="omega-slider" min="0" max="100" value="75">

</div>

<div class="value-display">控制宇宙基本结构强度</div>

</div>


<div class="control-group">

<div class="control-label">

<span><span class="icon">v</span>速度 (v/c)</span>

<span id="velocity-value">0.25</span>

</div>

<div class="slider-container">

<input type="range" id="velocity-slider" min="0" max="100" value="25">

</div>

<div class="value-display">当 v → 0 时,能量冻结为空间</div>

</div>


<div class="control-group">

<div class="control-label">

<span><span class="icon">R</span>曲率 (R)</span>

<span id="curvature-value">0.5</span>

</div>

<div class="slider-container">

<input type="range" id="curvature-slider" min="0" max="100" value="50">

</div>

<div class="value-display">曲率振荡表现为能量,零曲率形成空间</div>

</div>


<div class="control-group">

<div class="control-label">

<span><span class="icon">M</span>物质拓扑荷 (n)</span>

<span id="topology-value">3</span>

</div>

<div class="slider-container">

<input type="range" id="topology-slider" min="1" max="8" value="3">

</div>

<div class="value-display">M = n · h/c (n ∈ Z)</div>

</div>


<div class="button-group">

<button id="quantum-fluctuation">

<span class="icon"></span>量子涨落

</button>

<button id="double-slit">

<span class="icon"></span>双缝干涉

</button>

<button class="reset-btn" id="reset-btn">

<span class="icon"></span>重置模拟

</button>

</div>

</div>

</div>


<div class="theory-explanation">

<h2>几何统一理论核心概念</h2>

<div class="formula">G = e<sup>v</sup> · Γ = E ⊕ S ⊕ M</div>


<div class="theory-points">

<div class="point">

<h3><span class="icon"></span>几何本体定律</h3>

<p>宇宙的基本实体是几何势 ω,其微分产生代谢联络 Γ = dω</p>

<div class="formula">Γ = dω</div>

<p>Γ 决定了时空的几何结构,类比电磁理论中 F = dA</p>

</div>


<div class="point">

<h3><span class="icon"></span>存在形式定律</h3>

<p>万物是几何的三种表现形式:</p>

<ul>

<li>能量 ε = 1/2 R (曲率振荡)</li>

<li>空间 S = lim<sub>R→0</sub>Γ (零曲率冻结)</li>

<li>物质 M = (1/4π)∮<sub>V</sub>Γ (联络的拓扑荷)</li>

</ul>

</div>


<div class="point">

<h3><span class="icon"></span>动力学演化定律</h3>

<div class="formula">d(ε, S, M) = -κΓ</div>

<p>能量、空间、物质的演化由几何联络 Γ 驱动,其中 d 是外微分算子,κ 是霍奇对偶算子。</p>

</div>

</div>

</div>


<footer>

<p>几何统一理论宇宙模拟器 (c) 2023 | 万物皆几何:能量、空间、物质统一于几何本质</p>

<p>可视化标注版 - 清晰展示核心元素及其相互关系</p>

</footer>

</div>

<script>

// 获取Canvas元素和上下文

const canvas = document.getElementById('universeCanvas');

const ctx = canvas.getContext('2d');


// 设置Canvas大小

function resizeCanvas() {

canvas.width = canvas.parentElement.clientWidth - 40;

canvas.height = 500;

}


resizeCanvas();

window.addEventListener('resize', resizeCanvas);


// 模拟状态

let simulationState = {

omega: 0.75,

velocity: 0.25,

curvature: 0.5,

topology: 3,

quantumFluctuation: false,

doubleSlit: false,

time: 0

};


// 初始化控制元素

const omegaSlider = document.getElementById('omega-slider');

const velocitySlider = document.getElementById('velocity-slider');

const curvatureSlider = document.getElementById('curvature-slider');

const topologySlider = document.getElementById('topology-slider');


const omegaValue = document.getElementById('omega-value');

const velocityValue = document.getElementById('velocity-value');

const curvatureValue = document.getElementById('curvature-value');

const topologyValue = document.getElementById('topology-value');


const quantumBtn = document.getElementById('quantum-fluctuation');

const doubleSlitBtn = document.getElementById('double-slit');

const resetBtn = document.getElementById('reset-btn');


// 更新状态函数

function updateState() {

simulationState.omega = omegaSlider.value / 100;

simulationState.velocity = velocitySlider.value / 100;

simulationState.curvature = curvatureSlider.value / 100;

simulationState.topology = parseInt(topologySlider.value);


omegaValue.textContent = simulationState.omega.toFixed(2);

velocityValue.textContent = simulationState.velocity.toFixed(2);

curvatureValue.textContent = simulationState.curvature.toFixed(2);

topologyValue.textContent = simulationState.topology;

}


// 事件监听器

omegaSlider.addEventListener('input', updateState);

velocitySlider.addEventListener('input', updateState);

curvatureSlider.addEventListener('input', updateState);

topologySlider.addEventListener('input', updateState);


quantumBtn.addEventListener('click', () => {

simulationState.quantumFluctuation = !simulationState.quantumFluctuation;

quantumBtn.innerHTML = simulationState.quantumFluctuation ?

'<span class="icon"></span>量子涨落(开)' : '<span class="icon"></span>量子涨落(关)';

});


doubleSlitBtn.addEventListener('click', () => {

simulationState.doubleSlit = !simulationState.doubleSlit;

doubleSlitBtn.innerHTML = simulationState.doubleSlit ?

'<span class="icon"></span>双缝干涉(开)' : '<span class="icon"></span>双缝干涉(关)';

});


resetBtn.addEventListener('click', () => {

omegaSlider.value = 75;

velocitySlider.value = 25;

curvatureSlider.value = 50;

topologySlider.value = 3;

simulationState.quantumFluctuation = false;

simulationState.doubleSlit = false;

quantumBtn.innerHTML = '<span class="icon"></span>量子涨落';

doubleSlitBtn.innerHTML = '<span class="icon"></span>双缝干涉';

updateState();

});


// 初始更新状态

updateState();


// 绘制函数

function draw() {

// 清除画布

ctx.clearRect(0, 0, canvas.width, canvas.height);


// 更新模拟时间

simulationState.time += 0.02;


// 绘制几何势背景

drawGeometricPotential();


// 绘制几何生成元 (中心涡旋)

drawGenerator();


// 绘制联络曲线网络

drawConnectionNetwork();


// 根据速度绘制能量或空间

if (simulationState.velocity > 0.1) {

drawEnergyWaves();

} else {

drawSpaceGrid();

}


// 绘制物质拓扑纽结

drawTopologicalKnots();


// 绘制双缝干涉效果

if (simulationState.doubleSlit) {

drawDoubleSlit();

}


// 请求下一帧

requestAnimationFrame(draw);

}


// 绘制几何势背景

function drawGeometricPotential() {

const gradient = ctx.createRadialGradient(

canvas.width/2, canvas.height/2, 0,

canvas.width/2, canvas.height/2, canvas.width/2

);


gradient.addColorStop(0, `rgba(100, 70, 200, ${0.2 + simulationState.omega * 0.3})`);

gradient.addColorStop(0.7, `rgba(50, 30, 100, ${0.1 + simulationState.omega * 0.2})`);

gradient.addColorStop(1, 'rgba(10, 15, 35, 0.8)');


ctx.fillStyle = gradient;

ctx.fillRect(0, 0, canvas.width, canvas.height);


// 添加背景标签

ctx.fillStyle = 'rgba(180, 180, 255, 0.2)';

ctx.font = 'italic 24px Arial';

ctx.textAlign = 'center';

ctx.fillText('几何势 ω', canvas.width/2, canvas.height/2);

}


// 绘制几何生成元(中心涡旋)

function drawGenerator() {

const centerX = canvas.width / 2;

const centerY = canvas.height / 2;

const baseRadius = 40 + simulationState.curvature * 30;

const pulse = Math.sin(simulationState.time) * 10;

const radius = baseRadius + pulse;


// 涡旋主体

const gradient = ctx.createRadialGradient(

centerX, centerY, radius * 0.3,

centerX, centerY, radius

);


gradient.addColorStop(0, 'rgba(255, 255, 255, 0.9)');

gradient.addColorStop(0.6, 'rgba(200, 150, 255, 0.6)');

gradient.addColorStop(1, 'rgba(100, 70, 200, 0.3)');


ctx.beginPath();

ctx.arc(centerX, centerY, radius, 0, Math.PI * 2);

ctx.fillStyle = gradient;

ctx.fill();


// 涡旋细节 - 螺旋

ctx.strokeStyle = 'rgba(255, 220, 255, 0.7)';

ctx.lineWidth = 2;

ctx.beginPath();


for (let i = 0; i < 5; i++) {

const startAngle = simulationState.time + i * Math.PI * 0.4;

ctx.arc(centerX, centerY, radius * 0.7, startAngle, startAngle + Math.PI * 1.8);

}

ctx.stroke();


// 绘制标签

ctx.fillStyle = 'rgba(255, 255, 255, 0.9)';

ctx.font = 'bold 20px Arial';

ctx.textAlign = 'center';

ctx.fillText('几何生成元 G', centerX, centerY + 6);


// 添加公式标签

ctx.fillStyle = 'rgba(200, 220, 255, 0.8)';

ctx.font = 'italic 16px Arial';

ctx.fillText('G = e · Γ', centerX, centerY + 40);

}


// 绘制联络曲线网络

function drawConnectionNetwork() {

const centerX = canvas.width / 2;

const centerY = canvas.height / 2;

const density = 15 + simulationState.omega * 10;

const lineCount = 20 + simulationState.omega * 20;

const fluctuation = simulationState.quantumFluctuation ? 3 : 0;


ctx.strokeStyle = `rgba(255, 200, 100, ${0.3 + simulationState.omega * 0.3})`;

ctx.lineWidth = 1.5;


for (let i = 0; i < lineCount; i++) {

const angle = (i / lineCount) * Math.PI * 2;

const length = 150 + Math.sin(simulationState.time + i) * 30;


const endX = centerX + Math.cos(angle) * length;

const endY = centerY + Math.sin(angle) * length;


// 添加量子涨落效果

const fluctuateX = Math.random() * fluctuation - fluctuation/2;

const fluctuateY = Math.random() * fluctuation - fluctuation/2;


ctx.beginPath();

ctx.moveTo(centerX, centerY);

ctx.bezierCurveTo(

centerX + Math.cos(angle + 0.3) * length * 0.3,

centerY + Math.sin(angle + 0.3) * length * 0.3,

centerX + Math.cos(angle - 0.3) * length * 0.6,

centerY + Math.sin(angle - 0.3) * length * 0.6,

endX + fluctuateX, endY + fluctuateY

);

ctx.stroke();


// 在曲线末端添加标签

if (i % 4 === 0) {

ctx.fillStyle = 'rgba(255, 220, 100, 0.9)';

ctx.font = 'bold 14px Arial';

ctx.textAlign = 'center';

ctx.fillText('联络 Γ', endX + fluctuateX, endY + fluctuateY - 15);

}

}

}


// 绘制能量波纹

function drawEnergyWaves() {

const centerX = canvas.width / 2;

const centerY = canvas.height / 2;

const maxRadius = Math.max(canvas.width, canvas.height) * 0.8;

const amplitude = 5 + simulationState.curvature * 30;

const frequency = 0.03;


// 绘制多个同心圆波纹

for (let r = 50; r < maxRadius; r += 20) {

ctx.beginPath();


// 绘制波动圆

for (let angle = 0; angle < Math.PI * 2; angle += 0.1) {

const wave = Math.sin(angle * 8 + simulationState.time * 2) * amplitude * (r/100);

const x = centerX + Math.cos(angle) * (r + wave);

const y = centerY + Math.sin(angle) * (r + wave);


if (angle === 0) {

ctx.moveTo(x, y);

} else {

ctx.lineTo(x, y);

}

}


ctx.closePath();


// 设置样式

const alpha = 0.4 - (r / maxRadius) * 0.3;

ctx.strokeStyle = `rgba(255, 50, 100, ${alpha})`;

ctx.lineWidth = 2;

ctx.stroke();

}


// 添加能量标签

ctx.fillStyle = 'rgba(255, 100, 120, 0.9)';

ctx.font = 'bold 28px Arial';

ctx.textAlign = 'center';

ctx.fillText('能量 E', centerX, centerY - 100);


ctx.fillStyle = 'rgba(255, 180, 190, 0.7)';

ctx.font = 'italic 16px Arial';

ctx.fillText('ε = 1/2 R (曲率振荡)', centerX, centerY - 70);

}


// 绘制空间网格

function drawSpaceGrid() {

const gridSize = 30 - simulationState.velocity * 20;

const alpha = 0.6 - simulationState.velocity * 0.5;

const fluctuation = simulationState.quantumFluctuation ? 3 : 0;


ctx.strokeStyle = `rgba(100, 150, 255, ${alpha})`;

ctx.lineWidth = 1;


// 绘制垂直线

for (let x = 0; x < canvas.width; x += gridSize) {

ctx.beginPath();

ctx.moveTo(x, 0);


for (let y = 0; y < canvas.height; y += 5) {

const wave = Math.sin(x * 0.1 + y * 0.05 + simulationState.time) * fluctuation;

ctx.lineTo(x + wave, y);

}


ctx.stroke();

}


// 绘制水平线

for (let y = 0; y < canvas.height; y += gridSize) {

ctx.beginPath();

ctx.moveTo(0, y);


for (let x = 0; x < canvas.width; x += 5) {

const wave = Math.sin(x * 0.05 + y * 0.1 + simulationState.time) * fluctuation;

ctx.lineTo(x, y + wave);

}


ctx.stroke();

}


// 添加空间标签

ctx.fillStyle = 'rgba(100, 180, 255, 0.9)';

ctx.font = 'bold 28px Arial';

ctx.textAlign = 'center';

ctx.fillText('空间 S', canvas.width/2, canvas.height/2 - 100);


ctx.fillStyle = 'rgba(180, 210, 255, 0.7)';

ctx.font = 'italic 16px Arial';

ctx.fillText('S = lim_{R→0}Γ (零曲率冻结)', canvas.width/2, canvas.height/2 - 70);

}


// 绘制物质拓扑纽结

function drawTopologicalKnots() {

const centerX = canvas.width / 2;

const centerY = canvas.height / 2;

const knots = simulationState.topology;

const size = 40 + simulationState.curvature * 20;


for (let i = 0; i < knots; i++) {

const angle = (i / knots) * Math.PI * 2 + simulationState.time * 0.5;

const distance = 150 + Math.sin(simulationState.time * 0.5 + i) * 30;

const x = centerX + Math.cos(angle) * distance;

const y = centerY + Math.sin(angle) * distance;


// 绘制拓扑纽结(环形)

ctx.beginPath();

ctx.arc(x, y, size, 0, Math.PI * 2);


const gradient = ctx.createRadialGradient(

x, y, size * 0.3,

x, y, size

);

gradient.addColorStop(0, 'rgba(200, 100, 255, 0.8)');

gradient.addColorStop(1, 'rgba(100, 50, 150, 0.3)');


ctx.fillStyle = gradient;

ctx.fill();


// 绘制纽结细节

ctx.strokeStyle = 'rgba(255, 200, 255, 0.7)';

ctx.lineWidth = 2;

ctx.beginPath();

ctx.arc(x, y, size * 0.7, 0, Math.PI * 2);

ctx.stroke();


// 绘制纽结扭曲

ctx.beginPath();

for (let j = 0; j < 3; j++) {

const startAngle = simulationState.time + j * Math.PI * 0.7;

ctx.arc(x, y, size * 0.5, startAngle, startAngle + Math.PI);

}

ctx.stroke();


// 绘制标签

ctx.fillStyle = 'rgba(255, 255, 255, 0.9)';

ctx.font = 'bold 16px Arial';

ctx.textAlign = 'center';

ctx.fillText(`物质 M${i+1}`, x, y + size + 25);


// 添加公式标签

ctx.fillStyle = 'rgba(220, 180, 255, 0.8)';

ctx.font = 'italic 14px Arial';

ctx.fillText(`M${i+1} = ${i+1}·h/c`, x, y + size + 45);

}


// 添加总体物质标签

ctx.fillStyle = 'rgba(180, 100, 255, 0.9)';

ctx.font = 'bold 24px Arial';

ctx.textAlign = 'center';

ctx.fillText('物质 M (拓扑扭曲态)', centerX, centerY + 180);

}


// 绘制双缝干涉效果

function drawDoubleSlit() {

const centerX = canvas.width / 2;

const centerY = canvas.height * 0.8;

const width = 300;

const height = 200;


// 绘制双缝

ctx.fillStyle = 'rgba(100, 100, 150, 0.7)';

ctx.fillRect(centerX - width/2, centerY, width, 10);


// 绘制缝隙

ctx.clearRect(centerX - 30, centerY, 20, 15);

ctx.clearRect(centerX + 10, centerY, 20, 15);


// 绘制干涉条纹

ctx.strokeStyle = 'rgba(100, 200, 255, 0.6)';

ctx.lineWidth = 2;


for (let i = 0; i < 10; i++) {

const y = centerY + 30 + i * 15;

const amplitude = 50 - i * 4;


ctx.beginPath();

ctx.moveTo(centerX - 150, y);


for (let x = centerX - 150; x < centerX + 150; x += 2) {

const wave = Math.sin(x * 0.1 + simulationState.time * 3) * amplitude * (1 - i/10);

ctx.lineTo(x, y + wave);

}


ctx.stroke();

}


// 绘制标签

ctx.fillStyle = 'rgba(200, 220, 255, 0.9)';

ctx.font = 'bold 16px Arial';

ctx.textAlign = 'center';

ctx.fillText('双缝干涉实验', centerX, centerY - 20);


ctx.fillStyle = 'rgba(180, 200, 255, 0.8)';

ctx.font = 'italic 14px Arial';

ctx.fillText('观测改变几何联络 → 波函数坍缩', centerX, centerY - 45);

}


// 启动绘制循环

draw();

</script>

</body>

</html>

相关推荐

能量空间物质相互转化途径(能量与空间转换相对论公式)

代码实现<!DOCTYPEhtml><htmllang="zh"><head>...

从零开始的Flex布局掌握(flex布局实战)

前言在现代网页设计中,布局是一个至关重要的环节,在过去的一段时间里,页面的布局还都是通过table...

flex布局在css中的使用,一看就会!

1.认识flex布局我们在写前端页面的时候可能会遇到这样的问题:同样的一个页面在1920x1080的大屏幕中显示正常,但是在1366x768的小屏幕中却显示的非常凌乱。...

前端入门——弹性布局(Flex)(web前端弹性布局)

前言在css3Flex技术出现之前制作网页大多使用浮动(float)、定位(position)以及显示(display)来布局页面,随着互联网快速发展,移动互联网的到来,已无法满足需求,它对于那些...

CSS Flex 容器完整指南(css flex-shrink)

概述CSSFlexbox是现代网页布局的强大工具。本文详细介绍用于flex容器的CSS属性:...

Centos 7 network.service 启动失败

执行systemctlrestartnetwork重启网络报如下错误:Jobfornetwork.servicefailedbecausethecontrolprocessex...

CentOS7 执行systemctl start iptables 报错:...: Unit not found.

#CentOS7执行systemctlstartiptables报错:Failedtostartiptables.service:Unitnotfound.在CentOS7中...

systemd入门6:journalctl的详细介绍

该来的总会来的,逃是逃不掉的。话不多说,man起来:manjournalctl洋洋洒洒几百字的描述,是说journalctl是用来查询systemd日志的,这些日志都是systemd-journa...

Linux上的Systemctl命令(systemctl命令详解)

LinuxSystemctl是一个系统管理守护进程、工具和库的集合,用于取代SystemV、service和chkconfig命令,初始进程主要负责控制systemd系统和服务管理器。通过Syste...

如何使用 systemctl 管理服务(systemctl添加服务)

systemd是一个服务管理器,目前已经成为Linux发行版的新标准。它使管理服务器变得更加容易。了解并利用组成systemd的工具将有助于我们更好地理解它提供的便利性。systemctl的由来...

内蒙古2024一分一段表(文理)(内蒙古考生2020一分一段表)

分数位次省份...

2016四川高考本科分数段人数统计,看看你有多少竞争对手

昨天,四川高考成绩出炉,全省共220,196人上线本科,相信每个考生都查到了自己的成绩。而我们都清楚多考1分就能多赶超数百人,那你是否知道,和你的分数一样的人全省有几个人?你知道挡在你前面的有多少人?...

难怪最近电脑卡爆了,微软确认Win11资源管理器严重BUG

近期,Win11操作系统的用户普遍遭遇到了一个令人头大的问题:电脑卡顿,CPU占用率异常增高。而出现该现象的原因竟然与微软最近的一次补丁更新有关。据报道,微软已经确认,问题源于Win11资源管...

微软推送Win11正式版22621.1702(KB5026372)更新

IT之家5月10日消息,微软今天推送了最新的Win11系统更新,21H2正式版通道推送了KB5026368补丁,版本号升至22000.1936,22H2版本推送了KB50263...

骗子AI换脸冒充亲戚,女子转账10万元后才发现异常……

“今天全靠你们,不然我这被骗的10万元肯定就石沉大海了。”7月19日,家住石马河的唐女士遭遇了“AI”换脸诈骗,幸好她报警及时,民警对其转账给骗子的钱成功进行止付。当天13时许,唐女士收到一条自称是亲...

取消回复欢迎 发表评论: