百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

一篇文章搞定人工智能之深度学习创建训练数据集的方法

ztj100 2025-07-08 00:24 10 浏览 0 评论

基础数据准备

训练所需要的数据集合都存储在数据库中,还有部分文本文件
首先对数据进行分类结构化存储[因为涉及到的是多分类问题]

整理并存储原始数据集

使用numpy将所有需要数据读取出来

splitlines() ==> 按照\r \n 或者\r\n分割

import numpy as np
import pandas as pd
values1 = np.array(open(r'text1.txt', 'r', encoding='utf-8').read().splitlines())
values2 = np.random.choice(open(r'text2.txt', 'r', encoding='utf-8').read().splitlines(),100000) 

设计标识符

label_map = {
    1: 'values1',
    2: 'values2',
}

将所有数据进行拼接

data = np.concatenate([values1,values2])

生产相应数量的标识

lable = np.concatenate([np.array([4]*len(values1)),np.array([5]*len(values2))])

生成DataFrame数据结构

df = pd.DataFrame({"data":data,"lable":lable})

提取数据结构中多余的字符

df.replace('\r|\n|!', '', inplace=True, regex=True)

将整合后的原始数据存储为csv文件

df.to_csv("dataset.csv",sep="!",index=False,header=False)

使数据集向量化

from keras.preprocessing.sequence import pad_sequences  # 对序列进行预处理生成长度相同的序列
from keras.utils.np_utils import to_categorical  # 将标签转换为 one-hot 编码

对每个字符进行old操作

def process(s: str):
    s = str(s).lower()
    return [ord(c) for c in s]
data = df['data'].apply(process).values

将序列处理成相同长度的数组

MAX_SEQUENCE_LENGTH = 30
data = pad_sequences(data, maxlen=MAX_SEQUENCE_LENGTH,dtype='int',padding='post',truncating='post')

去除数组内重复数字并进行排序之后输出

palette = np.unique(data)

获取每个字符在palette中的位置

data = np.digitize(data, palette, right=True)

将标签转化为 one-hot 编码

labels = to_categorical(df['lable'].values)

划分训练子集与测试子集

from sklearn.model_selection import train_test_split
train_data, val_data, train_label, val_label = train_test_split(data, labels, test_size=0.2, random_state=42)
print('train data shape: ', train_data.shape, '   train label shape: ', train_label.shape)
print('val data shape: ', val_data.shape, '   val label shape: ', val_label.shape)

#人工智能##深度学习##AI科技#




相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: