百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

一篇文章搞定人工智能之深度学习创建训练数据集的方法

ztj100 2025-07-08 00:24 3 浏览 0 评论

基础数据准备

训练所需要的数据集合都存储在数据库中,还有部分文本文件
首先对数据进行分类结构化存储[因为涉及到的是多分类问题]

整理并存储原始数据集

使用numpy将所有需要数据读取出来

splitlines() ==> 按照\r \n 或者\r\n分割

import numpy as np
import pandas as pd
values1 = np.array(open(r'text1.txt', 'r', encoding='utf-8').read().splitlines())
values2 = np.random.choice(open(r'text2.txt', 'r', encoding='utf-8').read().splitlines(),100000) 

设计标识符

label_map = {
    1: 'values1',
    2: 'values2',
}

将所有数据进行拼接

data = np.concatenate([values1,values2])

生产相应数量的标识

lable = np.concatenate([np.array([4]*len(values1)),np.array([5]*len(values2))])

生成DataFrame数据结构

df = pd.DataFrame({"data":data,"lable":lable})

提取数据结构中多余的字符

df.replace('\r|\n|!', '', inplace=True, regex=True)

将整合后的原始数据存储为csv文件

df.to_csv("dataset.csv",sep="!",index=False,header=False)

使数据集向量化

from keras.preprocessing.sequence import pad_sequences  # 对序列进行预处理生成长度相同的序列
from keras.utils.np_utils import to_categorical  # 将标签转换为 one-hot 编码

对每个字符进行old操作

def process(s: str):
    s = str(s).lower()
    return [ord(c) for c in s]
data = df['data'].apply(process).values

将序列处理成相同长度的数组

MAX_SEQUENCE_LENGTH = 30
data = pad_sequences(data, maxlen=MAX_SEQUENCE_LENGTH,dtype='int',padding='post',truncating='post')

去除数组内重复数字并进行排序之后输出

palette = np.unique(data)

获取每个字符在palette中的位置

data = np.digitize(data, palette, right=True)

将标签转化为 one-hot 编码

labels = to_categorical(df['lable'].values)

划分训练子集与测试子集

from sklearn.model_selection import train_test_split
train_data, val_data, train_label, val_label = train_test_split(data, labels, test_size=0.2, random_state=42)
print('train data shape: ', train_data.shape, '   train label shape: ', train_label.shape)
print('val data shape: ', val_data.shape, '   val label shape: ', val_label.shape)

#人工智能##深度学习##AI科技#




相关推荐

能量空间物质相互转化途径(能量与空间转换相对论公式)

代码实现<!DOCTYPEhtml><htmllang="zh"><head>...

从零开始的Flex布局掌握(flex布局实战)

前言在现代网页设计中,布局是一个至关重要的环节,在过去的一段时间里,页面的布局还都是通过table...

flex布局在css中的使用,一看就会!

1.认识flex布局我们在写前端页面的时候可能会遇到这样的问题:同样的一个页面在1920x1080的大屏幕中显示正常,但是在1366x768的小屏幕中却显示的非常凌乱。...

前端入门——弹性布局(Flex)(web前端弹性布局)

前言在css3Flex技术出现之前制作网页大多使用浮动(float)、定位(position)以及显示(display)来布局页面,随着互联网快速发展,移动互联网的到来,已无法满足需求,它对于那些...

CSS Flex 容器完整指南(css flex-shrink)

概述CSSFlexbox是现代网页布局的强大工具。本文详细介绍用于flex容器的CSS属性:...

Centos 7 network.service 启动失败

执行systemctlrestartnetwork重启网络报如下错误:Jobfornetwork.servicefailedbecausethecontrolprocessex...

CentOS7 执行systemctl start iptables 报错:...: Unit not found.

#CentOS7执行systemctlstartiptables报错:Failedtostartiptables.service:Unitnotfound.在CentOS7中...

systemd入门6:journalctl的详细介绍

该来的总会来的,逃是逃不掉的。话不多说,man起来:manjournalctl洋洋洒洒几百字的描述,是说journalctl是用来查询systemd日志的,这些日志都是systemd-journa...

Linux上的Systemctl命令(systemctl命令详解)

LinuxSystemctl是一个系统管理守护进程、工具和库的集合,用于取代SystemV、service和chkconfig命令,初始进程主要负责控制systemd系统和服务管理器。通过Syste...

如何使用 systemctl 管理服务(systemctl添加服务)

systemd是一个服务管理器,目前已经成为Linux发行版的新标准。它使管理服务器变得更加容易。了解并利用组成systemd的工具将有助于我们更好地理解它提供的便利性。systemctl的由来...

内蒙古2024一分一段表(文理)(内蒙古考生2020一分一段表)

分数位次省份...

2016四川高考本科分数段人数统计,看看你有多少竞争对手

昨天,四川高考成绩出炉,全省共220,196人上线本科,相信每个考生都查到了自己的成绩。而我们都清楚多考1分就能多赶超数百人,那你是否知道,和你的分数一样的人全省有几个人?你知道挡在你前面的有多少人?...

难怪最近电脑卡爆了,微软确认Win11资源管理器严重BUG

近期,Win11操作系统的用户普遍遭遇到了一个令人头大的问题:电脑卡顿,CPU占用率异常增高。而出现该现象的原因竟然与微软最近的一次补丁更新有关。据报道,微软已经确认,问题源于Win11资源管...

微软推送Win11正式版22621.1702(KB5026372)更新

IT之家5月10日消息,微软今天推送了最新的Win11系统更新,21H2正式版通道推送了KB5026368补丁,版本号升至22000.1936,22H2版本推送了KB50263...

骗子AI换脸冒充亲戚,女子转账10万元后才发现异常……

“今天全靠你们,不然我这被骗的10万元肯定就石沉大海了。”7月19日,家住石马河的唐女士遭遇了“AI”换脸诈骗,幸好她报警及时,民警对其转账给骗子的钱成功进行止付。当天13时许,唐女士收到一条自称是亲...

取消回复欢迎 发表评论: