stm32知识点-定时器(stm32定时器定时时间计算在线计算)
ztj100 2025-06-24 18:16 22 浏览 0 评论
STM32内部定时器
103系列最多8个定时器
三种定时器区别
通用定时器描述
STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括:
位于低速的APB1总线上(APB1)
16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。
16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。
4 个独立通道(TIMx_CH1~4),这些通道可以用来作为:
① 输入捕获
② 输出比较
③ PWM 生成(边缘或中间对齐模式)
④ 单脉冲模式输出
可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。
如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器):
①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)
②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)
③输入捕获
④输出比较
⑤支持针对定位的增量(正交)编码器和霍尔传感器电路
⑥触发输入作为外部时钟或者按周期的电流管理
STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)等。
使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。
计数模式
通用定时器可以向上计数、向下计数、向上向下双向计数模式。
通用定时器工作框图
上框图详解
定时器中断
所需配置部分:时钟源选择和时基部分,即工作框图上半部分
时钟选择
计数器时钟可以由下列时钟源提供:
①内部时钟(CK_INT)
Tout(溢出时间)=(ARR+1)(PSC+1)/Tclk
Tclk---->由时钟发生器决定,若是RCC时钟则为36M或者72M
②外部时钟模式1:外部输入脚(TIx)
③外部时钟模式2:外部触发输入(ETR)
内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器
计数模式详解
通用定时器可以向上计数、向下计数、向上向下双向计数模式。
①向上计数模式:计数器从0计数到自动加载值(TIMx_ARR),然后重新从0开始计数并且产生一个计数器溢出事件。
②向下计数模式:计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。
③中央对齐模式(向上/向下计数):计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。
相关寄存器
计数器当前值寄存器CNT
预分频寄存器TIMx_PSC
自动重装载寄存器(TIMx_ARR)
控制寄存器1(TIMx_CR1)
DMA中断使能寄存器(TIMx_DIER)
所需库函数
定时器初始化
void TIM_TimeBaseInit(TIM_TypeDef* TIMx,TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
定时器之PWM
工作流程
ARR ----决定pwm周期 CCRx---决定占空比
工作过程
以模式1为例
CCR1:捕获比较(值)寄存器(x=1,2,3,4--四个通道):设置比较值。
CCMR1: OC1M[2:0]位:对于PWM方式下,用于设置PWM模式1【110】或者PWM模式2【111】
CCER:CC1P位:输入/捕获1输出极性。0:高电平有效,1:低电平有效。
CCER:CC1E位:输入/捕获1输出使能。0:关闭,1:打开
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
自动重载的预装载寄存器
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
ARPE=1,ARR立即生效,APRE=0,ARR下个比较周期生效
相关库函数和配置结构体
void TIM_OCxInit(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
typedef struct
{
uint16_t TIM_OCMode; //PWM模式1或者模式2
uint16_t TIM_OutputState; //输出使能 OR失能
uint16_t TIM_OutputNState;//互补输出使能状态
uint16_t TIM_Pulse; //比较值,写CCRx
uint16_t TIM_OCPolarity; //比较输出极性
uint16_t TIM_OCNPolarity;
uint16_t TIM_OCIdleState;
uint16_t TIM_OCNIdleState;
} TIM_OCInitTypeDef;
PWM输出配置步骤:
① 使能定时器3和相关IO口时钟。
使能定时器3时钟:RCC_APB1PeriphClockCmd();
使能GPIOB时钟:RCC_APB2PeriphClockCmd();
② 初始化IO口为复用功能输出。函数:GPIO_Init();
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
③这里我们是要把PB5用作定时器的PWM输出引脚,所以要重映射配置,
所以需要开启AFIO时钟。同时设置重映射。
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);
GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);
④ 初始化定时器:ARR,PSC等:TIM_TimeBaseInit();
⑤ 初始化输出比较参数:TIM_OC2Init();
⑥ 使能预装载寄存器: TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
⑦ 使能定时器。TIM_Cmd();
⑧ 不断改变比较值CCRx,达到不同的占空比效果:TIM_SetCompare2();
定时器之输入捕获
STM32 输入捕获工作过程
STM32 输入捕获工作过程(通道1为例)
一句话总结工作过程:通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。
上图各部分分段详情
步骤1:设置输入捕获滤波器(通道1为例)
步骤2:设置输入捕获极性(通道1为例)
步骤3:设置输入捕获映射通道(通道1为例)
步骤4:设置输入捕获分频器(通道1为例)
步骤5:捕获到有效信号可以开启中断
相关库函数
DEADTIME CONTROL
相对无效状态的时间或空间 ,在变频电源驱动中,两路PWM分别控制开关管,开关管交替导通之间就要插入一个死区,不然两个同时导通就会造成短路
相关推荐
- Linux集群自动化监控系统Zabbix集群搭建到实战
-
自动化监控系统...
- systemd是什么如何使用_systemd/system
-
systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
-
Linux系统日常巡检脚本,巡检内容包含了,磁盘,...
- 7,MySQL管理员用户管理_mysql 管理员用户
-
一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
-
1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
-
设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...
- linux系统启动流程和服务管理,带你进去系统的世界
-
Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...
- CentOS7系统如何修改主机名_centos更改主机名称
-
请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
-
在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
-
为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...
- Kubernetes 高可用(HA)集群部署指南
-
Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...
- Linux项目开发,你必须了解Systemd服务!
-
1.Systemd简介...
- Linux系统systemd服务管理工具使用技巧
-
简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...
- Linux下NetworkManager和network的和平共处
-
简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
这一次,彻底搞懂Java并发包中的Atomic原子类
-
- 最近发表
-
- Linux集群自动化监控系统Zabbix集群搭建到实战
- systemd是什么如何使用_systemd/system
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
- 7,MySQL管理员用户管理_mysql 管理员用户
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
- linux系统启动流程和服务管理,带你进去系统的世界
- CentOS7系统如何修改主机名_centos更改主机名称
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)