百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

从CPU到NPU,英特尔芯片到底快了多少?开发者实测:AI性能飞跃15倍!

ztj100 2025-06-19 02:15 4 浏览 0 评论

【CSDN 编者按】AI 技术快速发展的今天,计算硬件的进步成为推动 AI 应用落地的关键力量之一英特尔最新芯片搭载的神经处理单元(NPU),以其高效的 AI 任务处理能力,为开发者带来了全新的性能体验。相较于传统CPU,NPU 可以显著提升 AI 模型的运行速度,但具体能提升到什么程度呢?为了解答这个问题,本文作者通过实际测试和深入解析,最终确认:NPU 大概能带来 15 倍的性能提升。

作者 | Sebastian Montabone 翻译 | 郑丽媛
出品 | CSDN(ID:CSDNnews)

目前,英特尔最新的芯片配备了一个神经处理单元(NPU),其设计目标是比普通 CPU 更高效地处理 AI 和机器学习任务。理论上来说,NPU 可以更快地运行 AI 工作负载,并且功耗更低——这非常好,因为你可以将 CPU 释放出来执行其他通用任务。

但我想知道,与 CPU 相比,NPU 在运行模型时到底能快多少。根据我的测试结果:NPU 大概能带来 15 倍的性能提升,这实在是令人惊讶

如果你正在考虑购买一款带有 NPU 的边缘设备,我可以推荐 Khadas Mind 2 迷你 PC。它非常小巧,但性能强大,还配备了一个小型电池作为 UPS(不间断电源),你可以随意更换 USB 电源而不会断电。好的,现在让我们看看我是如何得出标题中提到的那个数字的。

在实时计算机视觉中,吞吐量和延迟是影响系统效率和响应速度的两个基本性能指标。吞吐量指的是每秒处理的帧数(FPS),决定了系统在一段时间内能处理多少数据,这基本上就是你问“处理这段视频需要多长时间”时所指的内容。另一方面,延迟是指从输入到输出处理单帧所需的时间,它会影响系统对新数据的响应速度。在增强现实和自动驾驶等实时应用中,低延迟至关重要。当你操作一个系统时,如果感觉它“卡顿”,那就是因为它的延迟很高。通常来说,一般人都希望保持低延迟和高吞吐量。

接下来,假设你已经在系统上安装了 OpenVINO,且设备中有一个带有 NPU 的英特尔芯片。如果你自己也不太确定,可以通过运行以下命令快速检查这两点是否属实:

import openvino as ov
core = ov.Core()core.available_devices

你应该会看到类似 ['CPU', 'GPU', 'NPU'] 的回复,这些是 OpenVINO 中可用的设备。如果你没有看到你的设备,请确保你正确安装了驱动程序,并在继续之前进行故障排除。

接下来,我们需要一个模型。我将使用 ResNet-50,这是最著名的卷积神经网络架构之一,由微软在 2015 年的论文《Deep Residual Learning for Image Recognition》中首次被提出。该模型在 ImageNet-1K 数据集上以 224×224 的分辨率进行了训练,这意味着你可以输入一张该尺寸的图像,模型将预测 1000 个不同物体类别的概率。

经过 OpenVINO 优化的 ResNet-50,可以前往这个地址下载:https://huggingface.co/katuni4ka/resnet50_fp16/tree/main。只需下载这两个文件:resnet50_fp16.xml 和 resnet50_fp16.bin,并将它们放在你的工作文件夹中。如果你想尝试其他模型,也可以这样做。请确保对你的模型运行 OpenVINO 优化器以获得最佳性能。我还将用 OpenCV 来加载和调整图像大小,因此我们先安装它,并确保 numpy 也已安装:

pip install opencv-python numpy

现在,让我们用这个模型对图像进行分类。将以下代码写入一个文件并保存为 classify.py:

import openvino as ovimport numpy as npimport cv2
def classify_image(): # Step 1: Load OpenVINO model core = ov.Core() model = core.read_model("resnet50_fp16.xml") compiled_model = core.compile_model(model, "CPU") # Use "NPU" if available
# Step 2: Get input tensor details input_layer = compiled_model.input(0) input_shape = input_layer.shape # Should be (1, 3, 224, 224)
# Step 3: Load and preprocess image image = cv2.imread("input.jpg") image = cv2.resize(image, (224, 224)) # Resize to match model input image = image[:, :, ::-1] # Convert BGR to RGB (OpenCV loads as BGR) image = image.astype(np.float32) / 255.0 # Normalise to [0,1] image = np.transpose(image, (2, 0, 1)) # HWC to CHW image = np.expand_dims(image, axis=0) # Add batch dimension
# Step 4: Run the inference output = compiled_model(image)[compiled_model.output(0)]
# Step 5: Process the results top_class = np.argmax(output) # Get class index
# Load ImageNet labels (remember to download the file) imagenet_labels = np.array([line.strip() for line in open("imagenet_classes.txt").readlines()])
# Display result print(f"Predicted Class: {imagenet_labels[top_class]}")
if __name__ == "__main__": classify_image()

确保在同一文件夹中有以下文件:classify.py、imagenet_classes.txt、resnet50_fp16.xml 和 resnet50_fp16.bin。然后添加任何图像并将其重命名为 input.jpg,之后只需调用脚本:

python classify.py

你应该能得到正确的预测类别,就像这样:

现在我们已经确认模型在 OpenVINO 上可以正常工作,接下来我们可以使用一个方便的工具——benchmark_app,来对不同设备上的模型性能进行基准测试。这个工具可以帮助你快速检查不同设备在运行不同模型时的性能表现。你可以通过以下命令调用它:

benchmark_app -m MODEL -d DEVICE -hint HINT

为了进行全面的性能对比,我运行了以下四条命令:

benchmark_app -m "resnet50_fp16.xml" -d CPU -hint latencybenchmark_app -m "resnet50_fp16.xml" -d CPU -hint throughputbenchmark_app -m "resnet50_fp16.xml" -d NPU -hint latencybenchmark_app -m "resnet50_fp16.xml" -d NPU -hint throughput

以下是测试结果:

关键结论:

(1)在延迟模式下,NPU 的平均延迟为 1.70ms,相比 CPU 的 24.73ms,性能提升了约 15 倍。

(2)在吞吐量模式下,NPU达到了 936.05 FPS,相比 CPU 的 62.69 FPS,性能提升了约 15 倍。

这些结果清楚地表明,在延迟和吞吐量方面,英特尔的 NPU 相比 CPU 都有显著的性能提升,特别是在这个特定的 ResNet-50 模型中,性能提升了大约 15 倍。

原文链接:https://www.samontab.com/web/2025/02/from-cpu-to-npu-the-secret-to-15x-faster-ai-on-intels-latest-chips/

DeepSeek 到底做了什么?所谓的“DeepSeek时刻”或者“国运级创新”到底意味着什么?今晚 8:00-9:30,CSDN 视频号推出“DeepSeek 暨 AI 进化论十日谈”系列第一讲精彩为您呈现,欢迎预约关注!


相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: