百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

可视化神经网络训练:PyTorch线性回归与决策边界实战

ztj100 2025-06-15 20:40 31 浏览 0 评论

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在官网-聚客AI学院大模型应用开发微调项目实践课程学习平台

一. 单层神经元实现线性回归

1.1 线性模型数学原理

线性回归模型定义为:

y=w·x+by=w·x+b

其中:

  • ww:权重(Weight)
  • bb:偏置(Bias)
  • xx:输入特征
  • yy:预测输出

目标:通过最小化均方误差(MSE)损失函数学习参数:

1.2 PyTorch实现代码

import torch  
import matplotlib.pyplot as plt  
# 生成数据  
X = torch.linspace(0, 10, 100).reshape(-1, 1)  
y = 3 * X + 2 + torch.randn(100, 1) * 2  # 添加噪声  
# 定义模型  
class LinearModel(torch.nn.Module):  
    def __init__(self):  
        super().__init__()  
        self.linear = torch.nn.Linear(1, 1)  # 单层神经元  
    def forward(self, x):  
        return self.linear(x)  
model = LinearModel()  
criterion = torch.nn.MSELoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  
# 训练循环  
losses = []  
for epoch in range(100):  
    pred = model(X)  
    loss = criterion(pred, y)  
    optimizer.zero_grad()  
    loss.backward()  
    optimizer.step()  
    losses.append(loss.item())  
# 可视化  
plt.scatter(X.numpy(), y.numpy(), label='Data')  
plt.plot(X.numpy(), model(X).detach().numpy(), 'r', label='Fitted Line')  
plt.legend()  
plt.show()


二. 线性模型实现二分类

2.1 逻辑回归原理

将线性输出通过Sigmoid函数映射到(0,1)区间:

损失函数使用二元交叉熵(BCE):

2.2 代码实现与决策边界

from sklearn.datasets import make_moons  
# 生成二分类数据集  
X, y = make_moons(n_samples=200, noise=0.1)  
X = torch.tensor(X, dtype=torch.float32)  
y = torch.tensor(y, dtype=torch.float32).reshape(-1, 1)  
# 定义模型(增加Sigmoid激活)  
class LogisticRegression(torch.nn.Module):  
    def __init__(self):  
        super().__init__()  
        self.linear = torch.nn.Linear(2, 1)  
        self.sigmoid = torch.nn.Sigmoid()  
    def forward(self, x):  
        return self.sigmoid(self.linear(x))  
model = LogisticRegression()  
criterion = torch.nn.BCELoss()  
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)  
# 训练  
for epoch in range(1000):  
    pred = model(X)  
    loss = criterion(pred, y)  
    optimizer.zero_grad()  
    loss.backward()  
    optimizer.step()  
# 可视化决策边界  
def plot_decision_boundary(model, X, y):  
    x_min, x_max = X[:,0].min()-0.5, X[:,0].max()+0.5  
    y_min, y_max = X[:,1].min()-0.5, X[:,1].max()+0.5  
    xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100),  
                           torch.linspace(y_min, y_max, 100))  
    grid = torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), dim=1)  
    probs = model(grid).reshape(xx.shape)  
    plt.contourf(xx, yy, probs > 0.5, alpha=0.3)  
    plt.scatter(X[:,0], X[:,1], c=y.squeeze(), edgecolors='k')  
    plt.show()  
plot_decision_boundary(model, X, y)

关键输出

  • 训练后准确率 > 85%
  • 决策边界图显示线性分类器的局限性


三. 多层感知机(MLP)手动推导与实现

3.1 手动推导反向传播

网络结构:输入层(2) → 隐藏层(4, ReLU) → 输出层(1, Sigmoid)

前向传播

反向传播梯度计算

3.2 PyTorch自动梯度实现

class MLP(torch.nn.Module):  
    def __init__(self):  
        super().__init__()  
        self.fc1 = torch.nn.Linear(2, 4)  
        self.fc2 = torch.nn.Linear(4, 1)  
        self.relu = torch.nn.ReLU()  
        self.sigmoid = torch.nn.Sigmoid()  
    def forward(self, x):  
        x = self.relu(self.fc1(x))  
        x = self.sigmoid(self.fc2(x))  
        return x  
model = MLP()  
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)  
# 复用之前的训练循环  
# ...  
plot_decision_boundary(model, X, y)  # 显示非线性决策边界

优化技巧

  • 权重初始化:torch.nn.init.kaiming_normal_(self.fc1.weight)
  • 学习率调度:scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
  • 梯度裁剪:torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)


四. 总结

4.1 核心要点总结

附:完整训练监控代码

from torch.utils.tensorboard import SummaryWriter  
writer = SummaryWriter()  
for epoch in range(1000):  
    pred = model(X)  
    loss = criterion(pred, y)  
    acc = ((pred > 0.5) == y).float().mean()  
    optimizer.zero_grad()  
    loss.backward()  
    optimizer.step()  
    writer.add_scalar('Loss/train', loss.item(), epoch)  
    writer.add_scalar('Accuracy/train', acc.item(), epoch)  
# 启动TensorBoard  
# tensorboard --logdir=runs


:本文代码基于PyTorch 2.0+实现,运行前需安装:

pip install torch matplotlib scikit-learn tensorboard

如果本次分享对你有所帮助,记得告诉身边有需要的朋友,"我们正在经历的不仅是技术迭代,而是认知革命。当人类智慧与机器智能形成共生关系,文明的火种将在新的维度延续。"在这场波澜壮阔的文明跃迁中,主动拥抱AI时代,就是掌握打开新纪元之门的密钥,让每个人都能在智能化的星辰大海中,找到属于自己的航向。

相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: