【Python可视化系列】一文教你绘制不同类型散点图(理论+源码)
ztj100 2025-06-15 20:40 38 浏览 0 评论
这是Python可视化系列原创文章。
一、引言
前文相关回顾:
【Python可视化系列】一文教会你绘制美观的热力图(理论+源码)
【Python可视化系列】一文教会你绘制美观的直方图(理论+源码)
【Python可视化系列】一文教会你绘制美观的柱状图(理论+源码)
【Python可视化系列】一文彻底教会你绘制美观的折线图(理论+源码)
本文将总结一下散点图的绘制方法。散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。
通过观察散点图上数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。数据的相关关系主要分为:正相关(两个变量值同时增长)、负相关(一个变量值增加另一个变量值下降)、不相关、线性相关、指数相关等。
二、参数详解
函数:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, , data=None, *kwargs)
参数说明
x, y : 相同长度的数组,数组大小(n,),也就是绘制散点图的数据;
s:绘制点的大小,可以是实数或大小为(n,)的数组, 可选的参数 ;
c:绘制点颜色, 默认是蓝色'b' , 可选的参数 ;
marker:表示的是标记的样式,默认的是'o' , 可选的参数 ;
cmap:当c是一个浮点数数组的时候才使用, 可选的参数 ;
norm:将数据亮度转化到0-1之间,只有c是一个浮点数的数组的时候才使用, 可选的参数 ;
vmin , vmax:实数,当norm存在的时候忽略。用来进行亮度数据的归一化 , 可选的参数 ;
alpha:实数,0-1之间, 可选的参数 ;
linewidths:标记点的长度, 可选的参数 ;
三、实现过程
3.1 基本散点图
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
plt.scatter(df['age'], df['chol'])
plt.title('age与chol的关系')
plt.xlabel('age')
plt.ylabel('chol')
plt.show()
基本散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。
3.2 分组散点图
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
colors = ['red','blue']
target = df['target'].unique()
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
for i in range(len(target)):
plt.scatter(df.loc[df.target == i, 'age'], df.loc[df.target==i,'chol'], s = 35, c = colors[i], label = i)
plt.title('age与chol的关系')
plt.xlabel('age')
plt.ylabel('chol')
plt.legend(loc='upper left')# 默认是左上方,
plt.show()
分组分类散点图是在两个主特征的基础上,叠加一个分类特征。
3.3 气泡图
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
# 假设thalach的第三个特征展示为为气泡大小
fea = df['thalach']
plt.scatter(df['age'], df['chol'], s=fea/2, c='purple', alpha=0.4, edgecolors="grey",
linewidth=2)
plt.xlabel('age') # 横坐标轴标题
plt.ylabel('chol') # 纵坐标轴标题
plt.title('s=thalach/2, c=purple', verticalalignment='bottom')
plt.show()
# 参数说明
# s:表征气泡大小的变量
# c:颜色,若想要彩色气泡,可以给c赋值,如c=fea
# alpha:不透明度
# edgecolors:气泡描边的颜色
# linewidth:气泡描边大小
气泡图的其中一条变量的表现形式是体现在气泡的大小或颜色深浅上,如果一个数据集中包含非常多的点,那么散点图可以将这些数据对比的结果一目了然,是比较适用的。分组分类散点图是在两个主特征的基础上,叠加一个分类特征,若在两个主特征的基础上,还要展示另外一个连续特征,可以使用气泡图。
3.4 三维散点图
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
ax = plt.subplot(projection = '3d') # 创建一个三维的绘图工程
ax.scatter(df['age'], df['chol'], df['thalach'])
plt.show()
三维散点图可以反映三个数值之间的关系,他是一个立体的图形,我们可以理解为将气泡图的三维数据绘制到三维坐标系,就形成了三维散点图。
3.5 散点密度图
# 生成模拟数据
N=1000
x = np.random.normal(size=N)
y = x * 3 + np.random.normal(size=N)
# 计算样本点密度
xy = np.vstack([x,y]) # 将两个维度的数据叠加
z = gaussian_kde(xy)(xy) # 建立概率密度分布,并计算每个样本点的概率密度
# 按密度排序,将密度最大的点排在最后
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
fig, ax = plt.subplots()
plt.scatter(x, y,c=z, s=20,cmap='Spectral') # c表示标记的颜色
plt.colorbar()
plt.show()
散点密度主要是计算样本点的出现次数,即密度。
本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注私信作者!
作者简介:
读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。
原文链接:
相关推荐
- Linux集群自动化监控系统Zabbix集群搭建到实战
-
自动化监控系统...
- systemd是什么如何使用_systemd/system
-
systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
-
Linux系统日常巡检脚本,巡检内容包含了,磁盘,...
- 7,MySQL管理员用户管理_mysql 管理员用户
-
一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
-
1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
-
设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...
- linux系统启动流程和服务管理,带你进去系统的世界
-
Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...
- CentOS7系统如何修改主机名_centos更改主机名称
-
请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
-
在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
-
为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...
- Kubernetes 高可用(HA)集群部署指南
-
Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...
- Linux项目开发,你必须了解Systemd服务!
-
1.Systemd简介...
- Linux系统systemd服务管理工具使用技巧
-
简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...
- Linux下NetworkManager和network的和平共处
-
简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
这一次,彻底搞懂Java并发包中的Atomic原子类
-
- 最近发表
-
- Linux集群自动化监控系统Zabbix集群搭建到实战
- systemd是什么如何使用_systemd/system
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
- 7,MySQL管理员用户管理_mysql 管理员用户
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
- linux系统启动流程和服务管理,带你进去系统的世界
- CentOS7系统如何修改主机名_centos更改主机名称
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)