百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python可视化系列】一文教你绘制不同类型散点图(理论+源码)

ztj100 2025-06-15 20:40 4 浏览 0 评论

这是Python可视化系列原创文章。

一、引言

前文相关回顾:

【Python可视化系列】一文教会你绘制美观的热力图(理论+源码)

【Python可视化系列】一文教会你绘制美观的直方图(理论+源码)

【Python可视化系列】一文教会你绘制美观的柱状图(理论+源码)

【Python可视化系列】一文彻底教会你绘制美观的折线图(理论+源码)

本文将总结一下散点图的绘制方法。散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定

通过观察散点图上数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。数据的相关关系主要分为:正相关(两个变量值同时增长)、负相关(一个变量值增加另一个变量值下降)、不相关、线性相关、指数相关等。

二、参数详解

函数:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, , data=None, *kwargs)
参数说明
x, y : 相同长度的数组,数组大小(n,),也就是绘制散点图的数据;
s:绘制点的大小,可以是实数或大小为(n,)的数组, 可选的参数 ;
c:绘制点颜色, 默认是蓝色'b' , 可选的参数 ;
marker:表示的是标记的样式,默认的是'o' , 可选的参数 ;
cmap:当c是一个浮点数数组的时候才使用, 可选的参数 ;
norm:将数据亮度转化到0-1之间,只有c是一个浮点数的数组的时候才使用, 可选的参数 ;
vmin , vmax:实数,当norm存在的时候忽略。用来进行亮度数据的归一化 , 可选的参数 ;
alpha:实数,0-1之间, 可选的参数 ;
linewidths:标记点的长度, 可选的参数 ;

三、实现过程

3.1 基本散点图

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)

sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
plt.scatter(df['age'], df['chol'])
plt.title('age与chol的关系')
plt.xlabel('age')
plt.ylabel('chol')
plt.show()

基本散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。

3.2 分组散点图

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
colors = ['red','blue']
target = df['target'].unique()

sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
for i in range(len(target)):
    plt.scatter(df.loc[df.target == i, 'age'], df.loc[df.target==i,'chol'], s = 35, c = colors[i], label = i)
plt.title('age与chol的关系')
plt.xlabel('age')
plt.ylabel('chol')
plt.legend(loc='upper left')# 默认是左上方,
plt.show()

分组分类散点图是在两个主特征的基础上,叠加一个分类特征。

3.3 气泡图

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
# 假设thalach的第三个特征展示为为气泡大小
fea = df['thalach']
plt.scatter(df['age'], df['chol'], s=fea/2, c='purple', alpha=0.4, edgecolors="grey",
            linewidth=2)
plt.xlabel('age')  # 横坐标轴标题
plt.ylabel('chol')  # 纵坐标轴标题
plt.title('s=thalach/2, c=purple', verticalalignment='bottom')
plt.show()
# 参数说明
# s:表征气泡大小的变量
# c:颜色,若想要彩色气泡,可以给c赋值,如c=fea
# alpha:不透明度
# edgecolors:气泡描边的颜色
# linewidth:气泡描边大小

气泡图的其中一条变量的表现形式是体现在气泡的大小或颜色深浅上,如果一个数据集中包含非常多的点,那么散点图可以将这些数据对比的结果一目了然,是比较适用的。分组分类散点图是在两个主特征的基础上,叠加一个分类特征,若在两个主特征的基础上,还要展示另外一个连续特征,可以使用气泡图。

3.4 三维散点图

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)

sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
ax = plt.subplot(projection = '3d')  # 创建一个三维的绘图工程
ax.scatter(df['age'], df['chol'], df['thalach'])
plt.show()

三维散点图可以反映三个数值之间的关系,他是一个立体的图形,我们可以理解为将气泡图的三维数据绘制到三维坐标系,就形成了三维散点图。

3.5 散点密度图

# 生成模拟数据
N=1000
x = np.random.normal(size=N)
y = x * 3 + np.random.normal(size=N)

# 计算样本点密度
xy = np.vstack([x,y])  #  将两个维度的数据叠加
z = gaussian_kde(xy)(xy)  # 建立概率密度分布,并计算每个样本点的概率密度

# 按密度排序,将密度最大的点排在最后
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
sns.set(font_scale=1.2)
plt.rc('font',family=['Times New Roman', 'SimSun'], size=12)
fig, ax = plt.subplots()
plt.scatter(x, y,c=z, s=20,cmap='Spectral') # c表示标记的颜色
plt.colorbar()
plt.show()

散点密度主要是计算样本点的出现次数,即密度。

本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注私信作者!

作者简介:

读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。

原文链接:

【Python可视化系列】一文教你绘制不同类型的散点图(理论+源码)

相关推荐

再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)

在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...

python编程:如何使用python代码绘制出哪些常见的机器学习图像?

专栏推荐...

python创建分类器小结(pytorch分类数据集创建)

简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...

matplotlib——绘制散点图(matplotlib散点图颜色和图例)

绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...

python实现实时绘制数据(python如何绘制)

方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...

简单学Python——matplotlib库3——绘制散点图

前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...

数据分析-相关性分析可视化(相关性分析数据处理)

前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...

免费Python机器学习课程一:线性回归算法

学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...

用Python进行机器学习(2)之逻辑回归

前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂

一、拟合和回归的区别拟合...

推荐2个十分好用的pandas数据探索分析神器

作者:俊欣来源:关于数据分析与可视化...

向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

用Python进行机器学习(11)-主成分分析PCA

我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...

神经网络基础深度解析:从感知机到反向传播

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

Python实现基于机器学习的RFM模型

CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...

取消回复欢迎 发表评论: