百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

TensorFlow和Pytorch中的音频增强

ztj100 2025-06-13 18:13 47 浏览 0 评论

对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。 因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。 尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。

在这篇文章中,将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。 第一种方式直接修改数据; 第二种方式是在网络的前向传播期间这样做的。除此以外我们还会介绍使用torchaudio的内置方法实现与TF相同的功能。

直接音频增强

首先需要生成一个人工音频数据集。 我们不需要加载预先存在的数据集,而是根据需要重复 librosa 库中的一个样本:

import librosa
import tensorflow as tf
def build_artificial_dataset(num_samples: int):
data = []
sampling_rates = []
for i in range(num_samples):
y, sr = librosa.load(librosa.ex('nutcracker'))
data.append(y)
sampling_rates.append(sr)
features_dataset = tf.data.Dataset.from_tensor_slices(data)
labels_dataset = tf.data.Dataset.from_tensor_slices(sampling_rates)
dataset = tf.data.Dataset.zip((features_dataset, labels_dataset))
return dataset
ds = build_artificial_dataset(10)

在此过程中创建了一个 Dataset 对象,我们也可以使用纯 NumPy 数组这个可以根据实际需求选择。

现在小数据集已经可以使用,可以开始应用增强了。对于这一步,为了简单起见,本文中使用 audiomentations 库,我们只使用三个增强方式, PitchShift、Shift 和 ApplyGaussianNoise。前两个移动音高(PitchShift)和数据(Shift,可以认为是滚动数据;例如,狗的叫声将移动 + 5 秒)。最后一次转换使信号更嘈杂,增加了神经网络的挑战。接下来,将所有三个增强功能组合到一个管道中:

from audiomentations import Compose, AddGaussianNoise, PitchShift, Shift
augmentations_pipeline = Compose(
[
AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),
PitchShift(min_semitones=-4, max_semitones=4, p=0.5),
Shift(min_fraction=-0.5, max_fraction=0.5, p=0.5),
]
)

在输入数据之前,必须编写一些额外的代码。这因为我们正在使用一个 Dataset 对象,这些代码告诉 TensorFlow 临时将张量转换为 NumPy 数组,然后再输入到数据增强的处理流程中:

def apply_pipeline(y, sr):
shifted = augmentations_pipeline(y, sr)
return shifted
@tf.function
def tf_apply_pipeline(feature, sr, ):
"""
Applies the augmentation pipeline to audio files
@param y: audio data
@param sr: sampling rate
@return: augmented audio data
"""
augmented_feature = tf.numpy_function(
apply_pipeline, inp=[feature, sr], Tout=tf.float32, name="apply_pipeline"
)
return augmented_feature, sr
def augment_audio_dataset(dataset: tf.data.Dataset):
dataset = dataset.map(tf_apply_pipeline)
return dataset

有了这些辅助函数,就可以扩充我们的数据集了。 最后,还需要再末尾添加维度来添加一个维度,这会将单个音频样本从 (num_data_point,) 转换为 (num_data_points, 1),表明我们有单声道音频:

ds = augment_audio_dataset(ds)
ds = ds.map(lambda y, sr: (tf.expand_dims(y, axis=-1), sr))

这样就完成了直接的音频数据增强

前向传播期间进行音频增强

上面的方式相比,在网络中增加音频数据会将计算负载放在前向传递上。

为了达到这个目的,这里使用提供自定义 TensorFlow 层的 kapre 库。我们使用 MelSpectrogram 层,它接受原始(即未修改的)音频数据并在 GPU 上计算 Mel 频谱图。

虽然与数据增强没有直接关系,但这有两个好处:

1、我们可以在例如超参数搜索期间优化频谱图生成的参数,从而无需重复将音频生成频谱图。

2、转换直接在 GPU 上进行,因此在原始转换速度和设备内存放置方面都会更快。

首先加载由 kapre 库提供的音频层。这些层获取原始音频数据并计算频谱图表示:

import kapre
input_layer = tf.keras.layers.Input(shape=input_shape, dtype=tf.float32)
melspectrogram = kapre.composed.get_melspectrogram_layer(
n_fft=1024,
return_decibel=True,
n_mels=256,
input_data_format='channels_last',
output_data_format='channels_last')(input_layer)

然后,我们从 spec-augment 包中添加一个增强层。 这个包实现了 SpecAugment 论文。 [1],它掩盖了频谱图的一部分。 掩蔽混淆了神经网络所需的信息,增加了学习的效果。 这种修改迫使网络关注其他特征,从而扩展其泛化到看不见的数据的能力:

from spec_augment import SpecAugment
spec_augment = SpecAugment(freq_mask_param=27, # F in paper
time_mask_param=100, # T in paper
n_freq_mask=1, # mF in paper
n_time_mask=2, # mT in paper
mask_value=-1, )(melspectrogram)

最后,对于我们的案例,添加了一个未经训练的残差网络,其中包含任意十个类来将数据分类:

spec_augment = tf.keras.applications.resnet_v2.preprocess_input(spec_augment)
core = tf.keras.applications.resnet_v2.ResNet152V2(
input_tensor=spec_augment,
include_top=False,
pooling="avg",
weights=None,
)
core = core.output
output = tf.keras.layers.Dense(units=10)(core)
resnet_model = tf.keras.Model(inputs=[input_layer], outputs=[output], name="audio_model")

这样我们就有了一个深度神经网络,可以在前向传播期间增强音频数据。

torchaudio

上面介绍的都是tf的方法,那么对于pytorch我们怎么办?可以直接使用官方提供的torchaudio包

torchaudio 实现了TimeStrech, TimeMasking 和FrequencyMasking.三种方式,我们看看官方给的代码

TimeStrech:

spec = get_spectrogram(power=None)
strech = T.TimeStretch()
rate = 1.2
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)
plot_spectrogram(spec[0].abs(), title="Original", aspect='equal', xmax=304)
rate = 0.9
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)

TimeMasking:

torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along time axis")

FrequencyMasking:

torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along frequency axis")

总结

在这篇博文中,我们介绍了2个主流深度学习框架的音频增强的方法,所以如果你是TF的爱好者,可以使用我们介绍的两种方法进行测试,如果你是pytorch的爱好者,直接使用官方的torchaudio包就可以了。

引用

[1] Park et al., Specaugment: A simple data augmentation method for automatic speech recognition, 2019, Proc. Interspeech 2019

作者:Pascal Janetzky

相关推荐

Java的SPI机制详解

作者:京东物流杨苇苇1.SPI简介SPI(ServiceProvicerInterface)是Java语言提供的一种接口发现机制,用来实现接口和接口实现的解耦。简单来说,就是系统只需要定义接口规...

90%的Java程序员都忽视的内部类使用不当导致内存泄露!

...

一文读懂 Spring Boot 启动原理,开发效率飙升!

在当今的Java开发领域,SpringBoot无疑是最热门的框架之一。它以其“约定大于配置”的理念,让开发者能够快速搭建和启动应用,极大地提高了开发效率。但是,你是否真正了解Spring...

ServiceLoader

ServiceLoader是Java提供的一种服务发现机制(ServiceProviderInterface,SPI)...

深入探索 Spring Boot3 中的自定义扩展操作

在当今互联网软件开发领域,SpringBoot无疑是最受欢迎的框架之一。随着其版本迭代至SpringBoot3,它为开发者们带来了更多强大的功能和特性,其中自定义扩展操作更是为我们在项目开发中...

Spring Boot启动过程全面解析:从入门到精通

一、SpringBoot概述SpringBoot是一个基于Spring框架的快速开发脚手架,它通过"约定优于配置"的原则简化了Spring应用的初始搭建和开发过程。...

Spring Boot 3.x 自定义 Starter 详解

今天星期六,继续卷springboot3.x。在SpringBoot3.x中,自定义Starter是封装和共享通用功能、实现“约定优于配置”理念的强大机制。通过创建自己的Starte...

Spring Boot 的 3 种动态 Bean 注入技巧

在SpringBoot开发中,动态注入Bean是一种强大的技术,它允许我们根据特定条件或运行时环境灵活地创建和管理Bean。相比于传统的静态Bean定义,动态注入提供了更高的灵活性和可...

大佬用4000字带你彻底理解SpringBoot的运行原理!

SpringBoot的运行原理从前面创建的SpringBoot应用示例中可以看到,启动一个SpringBoot工程都是从SpringApplication.run()方法开始的。这个方法具体完成...

Springboot是如何实现自动配置的

SpringBoot的自动配置功能极大地简化了基于Spring的应用程序的配置过程。它能够根据类路径中的依赖和配置文件中的属性,自动配置应用程序。下面是SpringBoot实现自动配置的...

Spring Boot3.x 应用的生命周期深度解析

SpringBoot应用的生命周期可以清晰地划分为三个主要阶段:启动阶段(Startup)...

Springboot 启动流程及各类事件生命周期那点事

前言本文通过Springboot启动方法分析SpringApplication逻辑。从静态run方法执行到各个阶段发布不同事件完成整个应用启动。...

Spring框架基础知识-常用的接口1

BeanDefinition基本概念BeanDefinition是Spring框架中描述bean配置信息的核心接口,它包含了创建bean实例所需的所有元数据。...

一家拥有 158 年历史的公司遭遇索赔,被迫关闭!

...

Java 技术岗面试全景备战!从基础到架构的系统性通关攻略分享

Java技术岗的面试往往是一项多维度的能力检验。本文将会从核心知识点、项目经验到面试策略,为你梳理一份系统性的备战攻略!...

取消回复欢迎 发表评论: