TensorFlow和Pytorch中的音频增强
ztj100 2025-06-13 18:13 56 浏览 0 评论
对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。 因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。 尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。
在这篇文章中,将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。 第一种方式直接修改数据; 第二种方式是在网络的前向传播期间这样做的。除此以外我们还会介绍使用torchaudio的内置方法实现与TF相同的功能。
直接音频增强
首先需要生成一个人工音频数据集。 我们不需要加载预先存在的数据集,而是根据需要重复 librosa 库中的一个样本:
import librosa
import tensorflow as tf
def build_artificial_dataset(num_samples: int):
data = []
sampling_rates = []
for i in range(num_samples):
y, sr = librosa.load(librosa.ex('nutcracker'))
data.append(y)
sampling_rates.append(sr)
features_dataset = tf.data.Dataset.from_tensor_slices(data)
labels_dataset = tf.data.Dataset.from_tensor_slices(sampling_rates)
dataset = tf.data.Dataset.zip((features_dataset, labels_dataset))
return dataset
ds = build_artificial_dataset(10)
在此过程中创建了一个 Dataset 对象,我们也可以使用纯 NumPy 数组这个可以根据实际需求选择。
现在小数据集已经可以使用,可以开始应用增强了。对于这一步,为了简单起见,本文中使用 audiomentations 库,我们只使用三个增强方式, PitchShift、Shift 和 ApplyGaussianNoise。前两个移动音高(PitchShift)和数据(Shift,可以认为是滚动数据;例如,狗的叫声将移动 + 5 秒)。最后一次转换使信号更嘈杂,增加了神经网络的挑战。接下来,将所有三个增强功能组合到一个管道中:
from audiomentations import Compose, AddGaussianNoise, PitchShift, Shift
augmentations_pipeline = Compose(
[
AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),
PitchShift(min_semitones=-4, max_semitones=4, p=0.5),
Shift(min_fraction=-0.5, max_fraction=0.5, p=0.5),
]
)
在输入数据之前,必须编写一些额外的代码。这因为我们正在使用一个 Dataset 对象,这些代码告诉 TensorFlow 临时将张量转换为 NumPy 数组,然后再输入到数据增强的处理流程中:
def apply_pipeline(y, sr):
shifted = augmentations_pipeline(y, sr)
return shifted
@tf.function
def tf_apply_pipeline(feature, sr, ):
"""
Applies the augmentation pipeline to audio files
@param y: audio data
@param sr: sampling rate
@return: augmented audio data
"""
augmented_feature = tf.numpy_function(
apply_pipeline, inp=[feature, sr], Tout=tf.float32, name="apply_pipeline"
)
return augmented_feature, sr
def augment_audio_dataset(dataset: tf.data.Dataset):
dataset = dataset.map(tf_apply_pipeline)
return dataset
有了这些辅助函数,就可以扩充我们的数据集了。 最后,还需要再末尾添加维度来添加一个维度,这会将单个音频样本从 (num_data_point,) 转换为 (num_data_points, 1),表明我们有单声道音频:
ds = augment_audio_dataset(ds)
ds = ds.map(lambda y, sr: (tf.expand_dims(y, axis=-1), sr))
这样就完成了直接的音频数据增强
前向传播期间进行音频增强
上面的方式相比,在网络中增加音频数据会将计算负载放在前向传递上。
为了达到这个目的,这里使用提供自定义 TensorFlow 层的 kapre 库。我们使用 MelSpectrogram 层,它接受原始(即未修改的)音频数据并在 GPU 上计算 Mel 频谱图。
虽然与数据增强没有直接关系,但这有两个好处:
1、我们可以在例如超参数搜索期间优化频谱图生成的参数,从而无需重复将音频生成频谱图。
2、转换直接在 GPU 上进行,因此在原始转换速度和设备内存放置方面都会更快。
首先加载由 kapre 库提供的音频层。这些层获取原始音频数据并计算频谱图表示:
import kapre
input_layer = tf.keras.layers.Input(shape=input_shape, dtype=tf.float32)
melspectrogram = kapre.composed.get_melspectrogram_layer(
n_fft=1024,
return_decibel=True,
n_mels=256,
input_data_format='channels_last',
output_data_format='channels_last')(input_layer)
然后,我们从 spec-augment 包中添加一个增强层。 这个包实现了 SpecAugment 论文。 [1],它掩盖了频谱图的一部分。 掩蔽混淆了神经网络所需的信息,增加了学习的效果。 这种修改迫使网络关注其他特征,从而扩展其泛化到看不见的数据的能力:
from spec_augment import SpecAugment
spec_augment = SpecAugment(freq_mask_param=27, # F in paper
time_mask_param=100, # T in paper
n_freq_mask=1, # mF in paper
n_time_mask=2, # mT in paper
mask_value=-1, )(melspectrogram)
最后,对于我们的案例,添加了一个未经训练的残差网络,其中包含任意十个类来将数据分类:
spec_augment = tf.keras.applications.resnet_v2.preprocess_input(spec_augment)
core = tf.keras.applications.resnet_v2.ResNet152V2(
input_tensor=spec_augment,
include_top=False,
pooling="avg",
weights=None,
)
core = core.output
output = tf.keras.layers.Dense(units=10)(core)
resnet_model = tf.keras.Model(inputs=[input_layer], outputs=[output], name="audio_model")
这样我们就有了一个深度神经网络,可以在前向传播期间增强音频数据。
torchaudio
上面介绍的都是tf的方法,那么对于pytorch我们怎么办?可以直接使用官方提供的torchaudio包
torchaudio 实现了TimeStrech, TimeMasking 和FrequencyMasking.三种方式,我们看看官方给的代码
TimeStrech:
spec = get_spectrogram(power=None)
strech = T.TimeStretch()
rate = 1.2
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)
plot_spectrogram(spec[0].abs(), title="Original", aspect='equal', xmax=304)
rate = 0.9
spec_ = strech(spec, rate)
plot_spectrogram(spec_[0].abs(), title=f"Stretched x{rate}", aspect='equal', xmax=304)
TimeMasking:
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along time axis")
FrequencyMasking:
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along frequency axis")
总结
在这篇博文中,我们介绍了2个主流深度学习框架的音频增强的方法,所以如果你是TF的爱好者,可以使用我们介绍的两种方法进行测试,如果你是pytorch的爱好者,直接使用官方的torchaudio包就可以了。
引用
[1] Park et al., Specaugment: A simple data augmentation method for automatic speech recognition, 2019, Proc. Interspeech 2019
作者:Pascal Janetzky
相关推荐
- Linux集群自动化监控系统Zabbix集群搭建到实战
-
自动化监控系统...
- systemd是什么如何使用_systemd/system
-
systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
-
Linux系统日常巡检脚本,巡检内容包含了,磁盘,...
- 7,MySQL管理员用户管理_mysql 管理员用户
-
一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
-
1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
-
设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...
- linux系统启动流程和服务管理,带你进去系统的世界
-
Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...
- CentOS7系统如何修改主机名_centos更改主机名称
-
请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
-
在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
-
为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...
- Kubernetes 高可用(HA)集群部署指南
-
Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...
- Linux项目开发,你必须了解Systemd服务!
-
1.Systemd简介...
- Linux系统systemd服务管理工具使用技巧
-
简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...
- Linux下NetworkManager和network的和平共处
-
简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
这一次,彻底搞懂Java并发包中的Atomic原子类
-
- 最近发表
-
- Linux集群自动化监控系统Zabbix集群搭建到实战
- systemd是什么如何使用_systemd/system
- Linux服务器日常巡检脚本分享_linux服务器监控脚本
- 7,MySQL管理员用户管理_mysql 管理员用户
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
- Linux自定义开机自启动服务脚本_linux添加开机自启动脚本
- linux系统启动流程和服务管理,带你进去系统的世界
- CentOS7系统如何修改主机名_centos更改主机名称
- 前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令
- Linux开机自启服务完全指南:3步搞定系统服务管理器配置
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)