百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Keras各种Callbacks介绍(keras中backend常用)

ztj100 2025-06-13 18:13 6 浏览 0 评论

1 前言

在tensorflow.keras中,callbacks能在fitevaluatepredict过程中加入伴随着模型的生命周期运行,目前tensorflow.keras已经构建了许多种callbacks供用户使用,用于防止过拟合、可视化训练过程、纠错、保存模型checkpoints和生成TensorBoard等。通过这篇文章,我们来了解一下如何使用tensorflow.keras里的各种callbacks,以及如何自定义callbacks。

2 使用callbacks

使用callbacks的步骤很简单,先定义callbacks,然后在model.fitmodel.evaluatemodel.predict中把定义好的callbacks传到callbacks参数里即可。

以最常见的ModelCheckpoint为例,使用过程如下示例:

...
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=filePath,
    save_weights_only=True,
    monitor='val_accuracy',
    mode='max')

model.fit(x, y, callbacks=model_checkpoint_callback)

这样在模型训练时,就会将模型checkpoints存储在对应的位置供后续使用。除了ModelCheckpoint,在Tensorflow 2.0中,还有许多其他类型的callbacks供使用,让我们一探究竟。

2.1 EarlyStopping

这个callback能监控设定的评价指标,在训练过程中,评价指标不再上升时,训练将会提前结束,防止模型过拟合,其默认参数如下:

tf.keras.callbacks.EarlyStopping(monitor='val_loss',
        min_delta=0,
        patience=0,
        verbose=0,
        mode='auto',
        baseline=None,
        restore_best_weights=False)

其中各个参数:

  • monitor:callbacks监控的评价指标。
  • min_delta:计作指标提升的最小度量。
  • patience:当评价指标没有提升时,等待的epochs数量,超过此数没有提升后训练将停止。
  • verbose:是否打印日志。
  • mode:设定监控指标的模式,如监控指标是否下降、上升或者根据指标名字自动推断。
  • baseline:监控指标的基准,当模型训练结果不及标准线,训练将停止。
  • restore_best_weights:是否从训练效果最好的epoch恢复模型,如果设置成False,将从最后一个step的模型权重恢复模型。

2.2 LearningRateScheduler

这个callback能在模型训练过程中调整学习率,通常而言,随着训练次数的变多,适当地降低学习率有利于模型收敛在全局最优点,因此这个callback需要搭配一个学习率调度器使用,在每个epoch开始时,schedule函数会获取最新的学习率并用在当前的epoch中:

tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)

# 调度函数在10个epoch前调用初始学习率,随后学习率呈指数下降
def scheduler(epoch, lr):
  if epoch < 10:
    return lr
  else:
    return lr * tf.math.exp(-0.1)

model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
model.compile(tf.keras.optimizers.SGD(), loss='mse')
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
                    epochs=15, callbacks=[callback], verbose=0)

2.3 ReduceLROnPlateau

相比于LearningRateScheduler,ReduceLROnPlateau不是按照预先设定好的调度调整学习率,它会在评价指标停止提升时降低学习率。

tf.keras.callbacks.ReduceLROnPlateau(
    monitor='val_loss', factor=0.1, patience=10, verbose=0,
    mode='auto', min_delta=0.0001, cooldown=0, min_lr=0, **kwargs
)

其中重要参数:

  • factor:学习率降低的程度,new_lr = lr * factor。
  • cooldown:重新监控评价指标前等待的epochs。
  • min_lr:允许的学习率最小值。

2.4 TensorBoard

TensorBoard能很方便地展示模型架构、训练过程,这个callback能生成TensorBoard的日志,当训练结束后可以在TensorBoard里查看可视化结果。

tf.keras.callbacks.TensorBoard(
    log_dir='logs', histogram_freq=0, write_graph=True,
    write_images=False, write_steps_per_second=False, update_freq='epoch',
    profile_batch=2, embeddings_freq=0, embeddings_metadata=None, **kwargs
)

其中重要参数:

  • log_dir:日志输出的路径。
  • histogram_freq:计算激活函数和权重直方图的频率,如果设置为0,则不计算直方图。
  • write_graph:是否在TensorBoard中可视化图像。
  • update_freq:取值为batchepoch或整数,将在指定的过程结束后将损失和评价指标写入TensorBoard。如果设置为整数,则意味着在设定数量的样本训练完后将损失和评价指标写入TensorBoard。

2.5 CSVLogger

顾名思义,这个callback能将训练过程写入CSV文件。

tf.keras.callbacks.CSVLogger(
    filename, separator=',', append=False
)

其中重要参数:

  • append:是否接着现有文件继续写入日志。

2.6 TerminateOnNaN

在损失变为NaN时停止训练。

tf.keras.callbacks.TerminateOnNaN()

2.7 自定义callback

除了上述callback外,还有一些callback可以查询TensorFlow官网[1],在使用多个callbacks时,可以使用列表将多个callbacks传入、或者使用
tf.keras.callbacks.CallbackList
[2]
。除此之外,也可以自定义callback,需要继承keras.callbacks.Callback,然后重写在不同训练阶段的方法。

training_finished = False

class MyCallback(tf.keras.callbacks.Callback):
  def on_train_end(self, logs=None):
    global training_finished
    training_finished = True

model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
model.compile(loss='mean_squared_error')
model.fit(tf.constant([[1.0]]), tf.constant([[1.0]]),
          callbacks=[MyCallback()])

assert training_finished == True

3 总结

本文总结了若干常用的tf.keras.callbacks,实际工作中,请按需使用,并且查看tf.keras.callbacks的官方文档确认参数取值。

希望这次的分享对你有帮助,欢迎在评论区留言讨论!

参考资料

[1] tf.keras.callbacks: 'https://www.tensorflow.org/api_docs/python/tf/keras/callbacks'

[2] tf.keras.callbacks.CallbackList: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/CallbackList

相关推荐

13个python常用库,提高你的开发能力

Python拥有大量封装好的功能模块和工具库,这些库广泛应用于数据分析、机器学习、Web开发、自动化等多个领域。库在Python的作用非常重要,利用库不仅能简化复杂的任务还能极大减少开发的时间。下面介...

TensorFlow中logits的含义解析(tensorflow2 lstm)

技术背景在机器学习尤其是深度学习领域,...

Python TensorFlow机器学习模型构建指南

以下是一篇关于使用Python和TensorFlow构建机器学习模型的详细指南,结合代码示例和关键概念解释:探索TensorFlow:构建强大的机器学习模型TensorFlow是由Goo...

TensorFlow和Pytorch中的音频增强

对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,...

使用TensorFlow进行深度学习模型训练

深度学习是一种机器学习的子领域,它通过模拟人脑神经网络的结构和运作方式,从而实现在大规模数据上进行复杂任务的训练和预测。TensorFlow是由Google开发的一款开源的深度学习框架,它为我们...

Keras各种Callbacks介绍(keras中backend常用)

1前言在tensorflow.keras中,callbacks能在fit、...

实例解析神经网络的工作原理(神经网络具体实例)

来源:算法进阶...

在浏览器中进行深度学习:TensorFlow.js (五)构建一个神经网络

这一次我们终于可以开始真正的深度学习了,从一个神经网络开始。神经网络(NeuralNetwork)是深度学习的基础,基本概念包括:神经元,层,反向传播等等。如果细讲我估计没有五到十篇文章那是讲不完的...

TensorFlow和Keras入门必读教程(tensorflow_core.keras)

导读:本文对TensorFlow的框架和基本示例进行简要介绍。作者:本杰明·普朗什(BenjaminPlanche)艾略特·安德烈斯(EliotAndres)来源:华章科技01TensorFlo...

Transformer系列:残差连接原理详细解析和代码论证

关键词:...

详解SoftMax多分类器(多分类svm代码)

常见的逻辑回归、SVM等常用于解决二分类问题,对于多个选项的分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM(只是需要多个二分类来组成多分类)。对于多分类的实现,我们还可以...

如何使用 TensorFlow 构建机器学习模型

在这篇文章中,我将逐步讲解如何使用TensorFlow创建一个简单的机器学习模型。TensorFlow是一个由谷歌开发的库,并在2015年开源,它能使构建和训练机器学习模型变得简单。...

芋道 ruoyi-vue-pro 踩的那些坑—前端编译打包问题

1、芋道ruoyi-vue-pro前端没有README.md,是可以理解,毕竟他们是以文档来创收的。但是对于非专业的前端人员非常的不友好。坑是一个接一个,很崩溃。我看项目有有个yarn.lock,...

Nginx部署Vue项目以及解决刷新页面404

在部署vue、react的前端项目时,经常会出现404的问题,一般是文件不是真正的存在,所以Nginx报404的错误一、打包项目1.在项目中的package.json上右键,点击Shownpm...

vue3管理后台,打包方便体积小,访问速度快,代码规整可读性强

项目介绍增强型vue3管理后台,打包方便体积小,访问速度快,代码规整可读性强。项目特点首页...

取消回复欢迎 发表评论: