百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Keras各种Callbacks介绍(keras中backend常用)

ztj100 2025-06-13 18:13 49 浏览 0 评论

1 前言

在tensorflow.keras中,callbacks能在fitevaluatepredict过程中加入伴随着模型的生命周期运行,目前tensorflow.keras已经构建了许多种callbacks供用户使用,用于防止过拟合、可视化训练过程、纠错、保存模型checkpoints和生成TensorBoard等。通过这篇文章,我们来了解一下如何使用tensorflow.keras里的各种callbacks,以及如何自定义callbacks。

2 使用callbacks

使用callbacks的步骤很简单,先定义callbacks,然后在model.fitmodel.evaluatemodel.predict中把定义好的callbacks传到callbacks参数里即可。

以最常见的ModelCheckpoint为例,使用过程如下示例:

...
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=filePath,
    save_weights_only=True,
    monitor='val_accuracy',
    mode='max')

model.fit(x, y, callbacks=model_checkpoint_callback)

这样在模型训练时,就会将模型checkpoints存储在对应的位置供后续使用。除了ModelCheckpoint,在Tensorflow 2.0中,还有许多其他类型的callbacks供使用,让我们一探究竟。

2.1 EarlyStopping

这个callback能监控设定的评价指标,在训练过程中,评价指标不再上升时,训练将会提前结束,防止模型过拟合,其默认参数如下:

tf.keras.callbacks.EarlyStopping(monitor='val_loss',
        min_delta=0,
        patience=0,
        verbose=0,
        mode='auto',
        baseline=None,
        restore_best_weights=False)

其中各个参数:

  • monitor:callbacks监控的评价指标。
  • min_delta:计作指标提升的最小度量。
  • patience:当评价指标没有提升时,等待的epochs数量,超过此数没有提升后训练将停止。
  • verbose:是否打印日志。
  • mode:设定监控指标的模式,如监控指标是否下降、上升或者根据指标名字自动推断。
  • baseline:监控指标的基准,当模型训练结果不及标准线,训练将停止。
  • restore_best_weights:是否从训练效果最好的epoch恢复模型,如果设置成False,将从最后一个step的模型权重恢复模型。

2.2 LearningRateScheduler

这个callback能在模型训练过程中调整学习率,通常而言,随着训练次数的变多,适当地降低学习率有利于模型收敛在全局最优点,因此这个callback需要搭配一个学习率调度器使用,在每个epoch开始时,schedule函数会获取最新的学习率并用在当前的epoch中:

tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)

# 调度函数在10个epoch前调用初始学习率,随后学习率呈指数下降
def scheduler(epoch, lr):
  if epoch < 10:
    return lr
  else:
    return lr * tf.math.exp(-0.1)

model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
model.compile(tf.keras.optimizers.SGD(), loss='mse')
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
                    epochs=15, callbacks=[callback], verbose=0)

2.3 ReduceLROnPlateau

相比于LearningRateScheduler,ReduceLROnPlateau不是按照预先设定好的调度调整学习率,它会在评价指标停止提升时降低学习率。

tf.keras.callbacks.ReduceLROnPlateau(
    monitor='val_loss', factor=0.1, patience=10, verbose=0,
    mode='auto', min_delta=0.0001, cooldown=0, min_lr=0, **kwargs
)

其中重要参数:

  • factor:学习率降低的程度,new_lr = lr * factor。
  • cooldown:重新监控评价指标前等待的epochs。
  • min_lr:允许的学习率最小值。

2.4 TensorBoard

TensorBoard能很方便地展示模型架构、训练过程,这个callback能生成TensorBoard的日志,当训练结束后可以在TensorBoard里查看可视化结果。

tf.keras.callbacks.TensorBoard(
    log_dir='logs', histogram_freq=0, write_graph=True,
    write_images=False, write_steps_per_second=False, update_freq='epoch',
    profile_batch=2, embeddings_freq=0, embeddings_metadata=None, **kwargs
)

其中重要参数:

  • log_dir:日志输出的路径。
  • histogram_freq:计算激活函数和权重直方图的频率,如果设置为0,则不计算直方图。
  • write_graph:是否在TensorBoard中可视化图像。
  • update_freq:取值为batchepoch或整数,将在指定的过程结束后将损失和评价指标写入TensorBoard。如果设置为整数,则意味着在设定数量的样本训练完后将损失和评价指标写入TensorBoard。

2.5 CSVLogger

顾名思义,这个callback能将训练过程写入CSV文件。

tf.keras.callbacks.CSVLogger(
    filename, separator=',', append=False
)

其中重要参数:

  • append:是否接着现有文件继续写入日志。

2.6 TerminateOnNaN

在损失变为NaN时停止训练。

tf.keras.callbacks.TerminateOnNaN()

2.7 自定义callback

除了上述callback外,还有一些callback可以查询TensorFlow官网[1],在使用多个callbacks时,可以使用列表将多个callbacks传入、或者使用
tf.keras.callbacks.CallbackList
[2]
。除此之外,也可以自定义callback,需要继承keras.callbacks.Callback,然后重写在不同训练阶段的方法。

training_finished = False

class MyCallback(tf.keras.callbacks.Callback):
  def on_train_end(self, logs=None):
    global training_finished
    training_finished = True

model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
model.compile(loss='mean_squared_error')
model.fit(tf.constant([[1.0]]), tf.constant([[1.0]]),
          callbacks=[MyCallback()])

assert training_finished == True

3 总结

本文总结了若干常用的tf.keras.callbacks,实际工作中,请按需使用,并且查看tf.keras.callbacks的官方文档确认参数取值。

希望这次的分享对你有帮助,欢迎在评论区留言讨论!

参考资料

[1] tf.keras.callbacks: 'https://www.tensorflow.org/api_docs/python/tf/keras/callbacks'

[2] tf.keras.callbacks.CallbackList: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/CallbackList

相关推荐

Linux集群自动化监控系统Zabbix集群搭建到实战

自动化监控系统...

systemd是什么如何使用_systemd/system

systemd是什么如何使用简介Systemd是一个在现代Linux发行版中广泛使用的系统和服务管理器。它负责启动系统并管理系统中运行的服务和进程。使用管理服务systemd可以用来启动、停止、...

Linux服务器日常巡检脚本分享_linux服务器监控脚本

Linux系统日常巡检脚本,巡检内容包含了,磁盘,...

7,MySQL管理员用户管理_mysql 管理员用户

一、首次设置密码1.初始化时设置(推荐)mysqld--initialize--user=mysql--datadir=/data/3306/data--basedir=/usr/local...

Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门

1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...

Linux自定义开机自启动服务脚本_linux添加开机自启动脚本

设置WGCloud开机自动启动服务init.d目录下新建脚本在/etc/rc.d/init.d新建启动脚本wgcloudstart.sh,内容如下...

linux系统启动流程和服务管理,带你进去系统的世界

Linux启动流程Rhel6启动过程:开机自检bios-->MBR引导-->GRUB菜单-->加载内核-->init进程初始化Rhel7启动过程:开机自检BIOS-->M...

CentOS7系统如何修改主机名_centos更改主机名称

请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言本文将讲解CentOS7系统如何修改主机名。...

前端工程师需要熟悉的Linux服务器(SSH 终端操作)指令

在Linux服务器管理中,SSH(SecureShell)是远程操作的核心工具。以下是SSH终端操作的常用命令和技巧,涵盖连接、文件操作、系统管理等场景:一、SSH连接服务器1.基本连接...

Linux开机自启服务完全指南:3步搞定系统服务管理器配置

为什么需要配置开机自启?想象一下:电商服务器重启后,MySQL和Nginx没自动启动,整个网站瘫痪!这就是为什么开机自启是Linux运维的必备技能。自启服务能确保核心程序在系统启动时自动运行,避免人工...

Kubernetes 高可用(HA)集群部署指南

Kubernetes高可用(HA)集群部署指南本指南涵盖从概念理解、架构选择,到kubeadm高可用部署、生产优化、监控备份和运维的全流程,适用于希望搭建稳定、生产级Kubernetes集群...

Linux项目开发,你必须了解Systemd服务!

1.Systemd简介...

Linux系统systemd服务管理工具使用技巧

简介:在Linux系统里,systemd就像是所有进程的“源头”,它可是系统中PID值为1的进程哟。systemd其实是一堆工具的组合,它的作用可不止是启动操作系统这么简单,像后台服务...

Red Hat Enterprise Linux 10 安装 Kubernetes (K8s) 集群及高级管理

一、前言...

Linux下NetworkManager和network的和平共处

简介我们在使用CentoOS系统时偶尔会遇到配置都正确但network启动不了的问题,这问题经常是由NetworkManager引起的,关闭NetworkManage并取消开机启动network就能正...

取消回复欢迎 发表评论: