最强分布式锁工具:Redisson(redis分布式锁和redisson分布式锁)
ztj100 2024-11-04 15:16 12 浏览 0 评论
一.什么是Redisson?
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务。
其中包括(BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, AtomicLong, CountDownLatch, Publish / Subscribe, Bloom filter, Remote service, Spring cache, Executor service, Live Object service, Scheduler service) Redisson提供了使用Redis的最简单和最便捷的方法。
Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。
一个基于Redis实现的分布式工具,有基本分布式对象和高级又抽象的分布式服务,为每个试图再造分布式轮子的程序员带来了大部分分布式问题的解决办法。
Redisson和Jedis、Lettuce有什么区别?
Redisson和它俩的区别就像一个用鼠标操作图形化界面,一个用命令行操作文件。Redisson是更高层的抽象,Jedis和Lettuce是Redis命令的封装。
- Jedis是Redis官方推出的用于通过Java连接Redis客户端的一个工具包,提供了Redis的各种命令支持
- Lettuce是一种可扩展的线程安全的 Redis 客户端,通讯框架基于Netty,支持高级的 Redis 特性,比如哨兵,集群,管道,自动重新连接和Redis数据模型。Spring Boot 2.x 开始 Lettuce 已取代 Jedis 成为首选 Redis 的客户端。
- Redisson是架设在Redis基础上,通讯基于Netty的综合的、新型的中间件,企业级开发中使用Redis的最佳范本
Jedis把Redis命令封装好,Lettuce则进一步有了更丰富的Api,也支持集群等模式。但是两者也都点到为止,只给了你操作Redis数据库的脚手架,而Redisson则是基于Redis、Lua和Netty建立起了成熟的分布式解决方案,甚至redis官方都推荐的一种工具集。
二、分布式锁
分布式锁怎么实现?
分布式锁是并发业务下的刚需,虽然实现五花八门:ZooKeeper有Znode顺序节点,数据库有表级锁和乐/悲观锁,Redis有setNx,但是殊途同归,最终还是要回到互斥上来,本篇介绍Redisson,那就以redis为例。
怎么写一个简单的Redis分布式锁?
以Spring Data Redis为例,用RedisTemplate来操作Redis(setIfAbsent已经是setNx + expire的合并命令),如下
// 加锁
public Boolean tryLock(String key, String value, long timeout, TimeUnit unit) {
return redisTemplate.opsForValue().setIfAbsent(key, value, timeout, unit);
}
// 解锁,防止删错别人的锁,以uuid为value校验是否自己的锁
public void unlock(String lockName, String uuid) {
if(uuid.equals(redisTemplate.opsForValue().get(lockName)){ redisTemplate.opsForValue().del(lockName); }
}
// 结构
if(tryLock){
// todo
}finally{
unlock;
}
简单1.0版本完成,聪明的小张一眼看出,这是锁没错,但get和del操作非原子性,并发一旦大了,无法保证进程安全。于是小张提议,用Lua脚本
Lua脚本是什么?
Lua脚本是redis已经内置的一种轻量小巧语言,其执行是通过redis的eval /evalsha 命令来运行,把操作封装成一个Lua脚本,如论如何都是一次执行的原子操作。
于是2.0版本通过Lua脚本删除
lock.lua如下
if redis.call('get', KEYS[1]) == ARGV[1]
then
-- 执行删除操作
return redis.call('del', KEYS[1])
else
-- 不成功,返回0
return 0
end
delete操作时执行Lua命令
// 解锁脚本
DefaultRedisScript<Object> unlockScript = new DefaultRedisScript();
unlockScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("lockDel.lua")));
// 执行lua脚本解锁
redisTemplate.execute(unlockScript, Collections.singletonList(keyName), value);
2.0似乎更像一把锁,但好像又缺少了什么,小张一拍脑袋,synchronized和ReentrantLock都很丝滑,因为他们都是可重入锁,一个线程多次拿锁也不会死锁,我们需要可重入。
怎么保证可重入?
重入就是,同一个线程多次获取同一把锁是允许的,不会造成死锁,这一点synchronized偏向锁提供了很好的思路,synchronized的实现重入是在JVM层面,JAVA对象头MARK WORD中便藏有线程ID和计数器来对当前线程做重入判断,避免每次CAS。
当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁标志是否设置成1:没有则CAS竞争;设置了,则CAS将对象头偏向锁指向当前线程。
再维护一个计数器,同个线程进入则自增1,离开再减1,直到为0才能释放
可重入锁
仿造该方案,我们需改造Lua脚本:
1.需要存储 锁名称lockName 、获得该锁的线程id 和对应线程的进入次数count
2.加锁
每次线程获取锁时,判断是否已存在该锁
不存在
设置hash的key为线程id,value初始化为1
设置过期时间
返回获取锁成功true
存在
继续判断是否存在当前线程id的hash key
存在,线程key的value + 1,重入次数增加1,设置过期时间
不存在,返回加锁失败
3.解锁
每次线程来解锁时,判断是否已存在该锁
存在
是否有该线程的id的hash key,有则减1,无则返回解锁失败
减1后,判断剩余count是否为0,为0则说明不再需要这把锁,执行del命令删除
加锁 lock.lua
local key = KEYS[1];
local threadId = ARGV[1];
local releaseTime = ARGV[2];
-- lockname不存在
if(redis.call('exists', key) == 0) then
redis.call('hset', key, threadId, '1');
redis.call('expire', key, releaseTime);
return 1;
end;
-- 当前线程已id存在
if(redis.call('hexists', key, threadId) == 1) then
redis.call('hincrby', key, threadId, '1');
redis.call('expire', key, releaseTime);
return 1;
end;
return 0;
解锁 unlock.lua
local key = KEYS[1];
local threadId = ARGV[1];
-- lockname、threadId不存在
if (redis.call('hexists', key, threadId) == 0) then
return nil;
end;
-- 计数器-1
local count = redis.call('hincrby', key, threadId, -1);
-- 删除lock
if (count == 0) then
redis.call('del', key);
return nil;
end;
java代码
/**
* @description 原生redis实现分布式锁
**/
@Getter
@Setter
public class RedisLock {
private RedisTemplate redisTemplate;
private DefaultRedisScript<Long> lockScript;
private DefaultRedisScript<Object> unlockScript;
public RedisLock(RedisTemplate redisTemplate) {
this.redisTemplate = redisTemplate;
// 加载加锁的脚本
lockScript = new DefaultRedisScript<>();
this.lockScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("lock.lua")));
this.lockScript.setResultType(Long.class);
// 加载释放锁的脚本
unlockScript = new DefaultRedisScript<>();
this.unlockScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("unlock.lua")));
}
/**
* 获取锁
*/
public String tryLock(String lockName, long releaseTime) {
// 存入的线程信息的前缀
String key = UUID.randomUUID().toString();
// 执行脚本
Long result = (Long) redisTemplate.execute(
lockScript,
Collections.singletonList(lockName),
key + Thread.currentThread().getId(),
releaseTime);
if (result != null && result.intValue() == 1) {
return key;
} else {
return null;
}
}
/**
* 解锁
* @param lockName
* @param key
*/
public void unlock(String lockName, String key) {
redisTemplate.execute(unlockScript,
Collections.singletonList(lockName),
key + Thread.currentThread().getId()
);
}
}
至此已经完成了一把分布式锁,符合互斥、可重入、防死锁的基本特点。
虽然当个普通互斥锁,已经稳稳够用,可是业务里总是又很多特殊情况的,比如A进程在获取到锁的时候,因业务操作时间太长,锁释放了但是业务还在执行,而此刻B进程又可以正常拿到锁做业务操作,两个进程操作就会存在依旧有共享资源的问题 。
而且如果负责储存这个分布式锁的Redis节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态 。
我们希望在这种情况时,可以延长锁的releaseTime延迟释放锁来直到完成业务期望结果,这种不断延长锁过期时间来保证业务执行完成的操作就是锁续约。
读写分离也是常见,一个读多写少的业务为了性能,常常是有读锁和写锁的。
而此刻的扩展已经超出了一把简单轮子的复杂程度,光是处理续约,就够小张喝一壶,何况在性能(锁的最大等待时间)、优雅(无效锁申请)、重试(失败重试机制)等方面还要下功夫研究。
Redisson就有这把你要的锁。
三、Redisson分布式锁
使用姿势
1.依赖
<!-- 原生,本章使用-->
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>
2.配置
@Configuration
public class RedissionConfig {
@Value("${spring.redis.host}")
private String redisHost;
@Value("${spring.redis.password}")
private String password;
private int port = 6379;
@Bean
public RedissonClient getRedisson() {
Config config = new Config();
config.useSingleServer().
setAddress("redis://" + redisHost + ":" + port).
setPassword(password);
return Redisson.create(config);
}
}
3.使用分布式锁
@Resource
private RedissonClient redissonClient;
RLock rLock = redissonClient.getLock(lockName);
try {
boolean isLocked = rLock.tryLock(expireTime, TimeUnit.MILLISECONDS);
if (isLocked) {
// TODO
}
} catch (Exception e) {
}finally{
rLock.unlock();
}
四、总结
Redisson整体实现分布式加解锁流程的实现稍显复杂,Redisson除分布式锁外还提供很多分布式应用(如分布式对象,list、map、set,锁、同步器等功能),详情请参考https://github.com/redisson/redisson/wiki/。
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)