百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

使用Transformer模型进行计算机视觉任务的端对端对象检测

ztj100 2025-06-09 07:25 13 浏览 0 评论

Transformer模型是google团队在2017在论文attention is all you need中提出的一个用于NLP领域的模型,但是随着VIT模型与Swin Transformer模型的发布,把Transformer模型成功应用到计算机视觉任务中。

上期图文,我们使用hugging face的transformers模型进行了VIT模型的对象分类任务。本期我们再次分享一个成功把Transformer模型应用到计算机对象检测任务模型。此模型是Facebook发布的基于Transformer模型的端对端对象检测任务模型-- DETR(detect Transformer模型)。

DETR模型首先使用CNN卷积神经网络搜集图片的核心特征点,然后把这些特征点整合起来,通过embedding方法,把特征图片转换到特征向量空间。然后根据标准Transformer模型的编码器与解码器进行注意力机制的计算,最后把计算后的数据进行图片对象的分类,并根据检测到的位置信息,提供对象box区域,方便我们画图。

传统的对象检测算法,如 Faster R-CNN,通过过滤大量粗略对象区域来预测对象边界框,这些区域通常是 CNN 特征图片区域。每个选定的区域都用于细化操作,包括在区域定义的位置裁剪 CNN 特征,独立对每个区域进行分类,并细化其位置。最后,应用非最大抑制步骤来删除重复框。而DETR 通过利用标准的Transformer架构来执行传统上特定于对象检测的操作,从而简化了检测管道,优化了算法步骤,提高了检测效率。

Transformers 的自注意力机制允许DETR模型对图像以及预测的特定对象执行全局推理。

例如,模型可能会查看图像的其他区域,以帮助对边界框中的对象做出检测。它还可以根据图像中对象之间的关系或相关性进行预测。例如,如果DETR预测图像中有一个人站在沙滩上,它就会知道部分被遮挡的物体更有可能是冲浪板。相比之下,其他检测模型只能独立的预测每个对象,每个对象之间并没有相关性。

代码实战DETR模型

既然是Facebook发布的模型,那么其首当其冲的便是使用pytorch框架来实现,且pytorch模型的TorchHub已经集成了此模型,我们可以直接使用TorchHub模型来实现本期代码,当然若想了解DETR模型的框架,当然最好是源代码来实现,这个我们后期进行分享。

import math
from PIL import Image
import requests
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina'
import ipywidgets as widgets
from IPython.display import display, clear_output
import torch
from torch import nn
from torchvision.models import resnet50
import torchvision.transforms as T
torch.set_grad_enabled(False);

首先我们需要导入需要的第三方库,这里主要是torch框架以及其他库。

CLASSES = [
    'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
    'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
    'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
    'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
    'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
    'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
    'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
    'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
    'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
    'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
    'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
    'toothbrush'
]
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

DETR模型训练在COCO数据集上,这里我们列举一下COCO数据集的对象分类,并定义一个colors颜色列表,方便我们进行不同颜色的备注。

transform = T.Compose([
    T.Resize(800),
    T.ToTensor(),
    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
    return b
def plot_results(pil_img, prob, boxes):
    plt.figure(figsize=(16,10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=15,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.axis('off')
    plt.show()

然后我们定义几个函数,方便显示我们经过模型检测后的box,主要是为了我们后期进行box的画图,模型对象检测后的标签与模型检测置信度。

有了以上的函数,我们就可以把图片放入我们的DETR模型进行对象检测了。

model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True)
model.eval();
#url = 'http://images.cocodataset.org/val2017/00000003769.jpg'
#im = Image.open(requests.get(url, stream=True).raw)
im = Image.open('11.png').convert('RGB')

img = transform(im).unsqueeze(0)
outputs = model(img)
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.8
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)

plot_results(im, probas[keep], bboxes_scaled)

首先我们使用torch.hub.load函数来加载DETR模型的预训练模型,并传递一张图片。当然这里可以直接传递图片的URL地址,也可以直接从本地打开一张需要检测的模型。

加载图片后,我们需要把图片转换到torch变量,然后把图片数据传递到model模型来进行对象检测的预测,结果保持在output中,然后我们使用soft Max函数来挑选概率最大的对象检测数据,并挑选出置信度大于0.8(预设值)的对象标签与置信度。

得到检测结果后,最后我们使用plot_results函数来可视化检测到的对象。

上期图文教程,YOLO-NAS对象检测算法再一次颠覆YOLO系列算法——已超越YOLOv8,我们使用YOLO的最新模型进行了同一张图片的对象检测,我们可以使用以上代码与YOLO- NAS模型来进行对象检测的对比。

从对象检测的速度与精度来讲,基于transformer注意力机制算法的DETR模型同样可以使用在对象检测任务中,让transformer模型进行模型大一统更近了一步。




相关推荐

这个 JavaScript Api 已被废弃!请慎用!

在开发过程中,我们可能会不自觉地使用一些已经被标记为废弃的JavaScriptAPI。这些...

JavaScript中10个“过时”的API,你的代码里还在用吗?

JavaScript作为一门不断发展的语言,其API也在持续进化。新的、更安全、更高效的API不断涌现,而一些旧的API则因为各种原因(如安全问题、性能瓶颈、设计缺陷或有了更好的替代品)被标记为“废...

几大开源免费的 JavaScript 富文本编辑器测评

MarkDown编辑器用的时间长了,发现发现富文本编辑器用起来是真的舒服。...

比较好的网页里面的 html 编辑器 推荐

如果您正在寻找嵌入到网页中的HTML编辑器,以便用户可以直接在网页上编辑HTML内容,以下是几个备受推荐的:CKEditor:CKEditor是一个功能强大的、开源的富文本编辑器,可以嵌入到...

Luckysheet 实现excel多人在线协同编辑

前言前些天看到Luckysheet支持协同编辑Excel,正符合我们协同项目的一部分,故而想进一步完善协同文章,但是遇到了一下困难,特此做声明哈,若侵权,请联系我删除文章!若侵犯版权、个人隐私,请联系...

从 Element UI 源码的构建流程来看前端 UI 库设计

作者:前端森林转发链接:https://mp.weixin.qq.com/s/ziDMLDJcvx07aM6xoEyWHQ引言...

手把手教你如何用 Decorator 装饰你的 Typescript?「实践」

作者:Nealyang转发连接:https://mp.weixin.qq.com/s/PFgc8xD7gT40-9qXNTpk7A...

推荐五个优秀的富文本编辑器

富文本编辑器是一种可嵌入浏览器网页中,所见即所得的文本编辑器。对于许多从事前端开发的小伙伴来说并不算陌生,它的应用场景非常广泛,平时发个评论、写篇博客文章等都能见到它的身影。...

基于vue + element的后台管理系统解决方案

作者:林鑫转发链接:https://github.com/lin-xin前言该方案作为一套多功能的后台框架模板,适用于绝大部分的后台管理系统(WebManagementSystem)开发。基于v...

开源富文本编辑器Quill 2.0重磅发布

开源富文本编辑器Quill正式发布2.0版本。官方TypeScript声明...

Python之Web开发框架学习 Django-表单处理

在Django中创建表单实际上类似于创建模型。同样,我们只需要从Django类继承,则类属性将是表单字段。让我们在myapp文件夹中添加一个forms.py文件以包含我们的应用程序表单。我们将创建一个...

Django测试入门:打造坚实代码基础的钥匙

这一篇说一下django框架的自动化测试,...

Django ORM vs SQLAlchemy:到底谁更香?从入门到上头的选择指南

阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。...

超详细的Django 框架介绍,它来了!

时光荏苒,一晃小编的Tornado框架系列也结束了。这个框架虽然没有之前的FastAPI高流量,但是,它也是小编的心血呀。总共16篇博文,从入门到进阶,包含了框架的方方面面。虽然小编有些方面介绍得不是...

20《Nginx 入门教程》使用 Nginx 部署 Python 项目

今天的目标是完成一个PythonWeb项目的线上部署,我们使用最新的Django项目搭建一个简易的Web工程,然后基于Nginx服务部署该PythonWeb项目。1.前期准备...

取消回复欢迎 发表评论: