百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

大数据量查询容易OOM?试试MySQL流式查询

ztj100 2025-05-27 19:16 23 浏览 0 评论

一、前言

程序访问 MySQL 数据库时,当查询出来的数据量特别大时,数据库驱动把加载到的数据全部加载到内存里,就有可能会导致内存溢出(OOM)。

其实在 MySQL 数据库中提供了流式查询,允许把符合条件的数据分批一部分一部分地加载到内存中,可以有效避免OOM;本文主要介绍如何使用流式查询并对比普通查询进行性能测试。

二、JDBC实现流式查询

使用JDBC的
PreparedStatement/Statement
setFetchSize 方法设置为 Integer.MIN_VALUE 或者使用方法
Statement.enableStreamingResults()
可以实现流式查询,在执行 ResultSet.next() 方法时,会通过数据库连接一条一条的返回,这样也不会大量占用客户端的内存。

public int execute(String sql, boolean isStreamQuery) throws SQLException {
    Connection conn = null;
    PreparedStatement stmt = null;
    ResultSet rs = null;
    int count = 0;
    try {
        //获取数据库连接
        conn = getConnection();
        if (isStreamQuery) {
            //设置流式查询参数
            stmt = conn.prepareStatement(sql, ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);
            stmt.setFetchSize(Integer.MIN_VALUE);
        } else {
            //普通查询
            stmt = conn.prepareStatement(sql);
        }

        //执行查询获取结果
        rs = stmt.executeQuery();
        //遍历结果
        while(rs.next()){
            System.out.println(rs.getString(1));
            count++;
        }
    } catch (SQLException e) {
        e.printStackTrace();
    } finally {
        close(stmt, rs, conn);
    }
    return count;
}

PS:上面的例子中通过参数 isStreamQuery 来切换流式查询普通查询,用于下面做测试对比。

三、性能测试

创建了一张测试表 my_test 进行测试,总数据量为 27w 条,分别使用以下4个测试用例进行测试:

  1. 大数据量普通查询(27w条)
  2. 大数据量流式查询(27w条)
  3. 小数据量普通查询(10条)
  4. 小数据量流式查询(10条)

3.1. 测试大数据量普通查询

@Test
public void testCommonBigData() throws SQLException {
    String sql = "select * from my_test";
    testExecute(sql, false);
}

3.1.1. 查询耗时

27w 数据量用时 38 秒

3.1.2. 内存占用情况

使用将近 1G 内存

3.2. 测试大数据量流式查询

@Test
public void testStreamBigData() throws SQLException {
    String sql = "select * from my_test";
    testExecute(sql, true);
}

3.2.1. 查询耗时

27w 数据量用时 37 秒

3.2.2. 内存占用情况

由于是分批获取,所以内存在30-270m波动

3.3. 测试小数据量普通查询

@Test
public void testCommonSmallData() throws SQLException {
    String sql = "select * from my_test limit 100000, 10";
    testExecute(sql, false);
}

3.3.1. 查询耗时

10 条数据量用时 1 秒

3.4. 测试小数据量流式查询

@Test
public void testStreamSmallData() throws SQLException {
    String sql = "select * from my_test limit 100000, 10";
    testExecute(sql, true);
}

3.4.1. 查询耗时

10 条数据量用时 1 秒

四、总结

MySQL 流式查询对于内存占用方面的优化还是比较明显的,但是对于查询速度的影响较小,主要用于解决大数据量查询时的内存占用多的场景。

DEMO地址
https://github.com/zlt2000/mysql-stream-query

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: