百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

MySQL 单表可以放多少数据,最多 2000 万?

ztj100 2025-05-27 19:14 24 浏览 0 评论

关于单表能存多少数据,阿里 JAVA 开发手册提出,建议最大 2000 万

然后也看过一篇文章,可以往单表塞 1 亿。

当然,以上其实都有一些理论支撑,但是都不全面,也没有结合具体实际的场景。

这篇文章,结合之前学习的知识,进行一个整体汇总,并贴合实际场景展开

01 理论知识

B+ 树

MySQL 的底层结构用 B+ 树存储,这个估计地球人都知道。

为了便于后续讲解,先普及几个概念:

  • 对于非聚集索引,B+ 树的叶子节点和非叶子节点存储的都是索引指针;
  • 对于聚集索引,B+ 树的非叶子节点存储的是索引指针,叶子节点存储的是数据,顺序排列;
  • InnoDB 中的 B+ 树的高度一般会保持在 3 层以内,我们就以 3 层来定。

下图是聚集索引,3 层 B+ 树的结构:

虚线部分,可以找到对应页码的数据,这里很基础,不去过多解读。

页存储

B+ 树节点的存储结构是 “页”,一页的大小 16 KB。

下面是页结构示意图:

再看看对页结构的解读:


那一页能留多少存储空间呢?

除了 User Records 和 Free Space 以外所占用的存储是 38 + 56 + 26 + 8 = 128。

当新记录插入到 InnoDB 聚集索引中时,InnoDB 会尝试留出 1/16 的页面空闲以供将来插入和更新索引记录,所以就只剩下 15/16。

可存储空间 = 15/16 * 1024 - 128 = 15232 字节。

行存储

MySQL 的数据是行存储,MySQL 5.6 默认行格式为 COMPACT(紧凑),5.7 及以后的默认行为 DYNAMIC(动态)。

下面是行结构示意图:

再看看对行结构的解读:



02 叶子节点计算

3 层 B+ 树最大数据量

前面说了,我们的 B+ 树是 3 层,第一层就一个根节点,能存放 X 个指针。

第二层的每个节点,也能存放 X 个指针,指向第三层 X 个节点。

第三层的每个节点,存放 Y 个数据。

3 层 B+ 树最大数据量 = x ^ 2 * y。

叶子节点总数 x ^ 2 计算

我们先看一页能存储多少个指针索引。

每一条索引记录当中都包含了当前索引的值 、一个 6 字节的指针信息 、一个 5 字节的行标头,用来指向下一层数据页的指针。

索引记录当中的指针占用空间我没在官方文档里找到,这个 6 字节是我参考其他博文,他们说源码里写的是 6 字节。

假设我们的主键 id 为 bigint 型,也就是 8 字节。

索引指针大小:8 + 6 + 5 = 19 字节。

前面已经算出,每页可存储空间 15232 字节。

单页可存储索引指针:15232 / 19 ≈ 801 条。

那算上页目录的话,按每个槽平均 6 条数据计算的话,至少有 801 / 6 ≈ 134 个槽,需要占用 268 字节的空间。

把存数据的空间分一点给槽的话,我算出来大约可以存 787 条索引数据。

单页数据存储索引指针:

  • 最终单页可存储 bigint 型索引指针:(15232 - 268)/ 19 ≈ 787 条;
  • 最终单页可存储 int 型索引指针 993 条。

叶子节点总数:

  • 主键为 bigint 的表可以存放 787 ^ 2 = 619369 个叶子节点;
  • 主键为 int 的表可以存放 993 ^ 2 = 986049 个叶子节点。

说明:以上的数据计算,仅供参考,因为有的文章说,在主键为 bigint 的情况下,可存放 160 万叶子节点,整整多出 65 万。

03 总记录数计算

溢出页

前面提到过,MySQL 行存储格式包括 COMPACT 和 DYNAMIC,我们这里只看 DYNAMIC。

DYNAMIC 怎么理解?

在一行数据中,当某列太长时,叶子节点无需将该数据直接存储 ,而是存储指向该数据的指针,真实数据全部存储在溢出页。

使用 DYNAMIC 格式,较短的列会尽可能保留在 B+ 树节点中,从而最大限度地减少给定行所需的溢出页数。

那 COMPACT 呢?

COMPACT 行格式则是将前 768 个字节和 20 字节的指针存储在 B+ 树节点的记录中,其余部分存储在溢出页上。

这里我们只讨论 DYNAMIC 情况。

最少总记录数

前面我们提到,最大行长度略小于数据库页面的一半,之所以是略小于一半,是由于每个页面还留了点空间给页格式的其他内容,所以我们可以认为每个页面最少能放两条数据,每条数据略小于 8 KB。

如果某行的数据长度超过这个值,那 InnoDB 肯定会分一些数据到 溢出页当中去了,所以我们不考虑。

那每条数据 8 KB 的话,每个叶子节点就只能存放 2 条数据。

在主键为 int 的情况下,最少总记录数:2 × 986049 ≈ 124 万。

最多总记录数

假设我们的表是这样的:

CREATE TABLE `course_schedule` (
  `id` int NOT NULL,
  `teacher_id` int NOT NULL,
  `course_id` int NOT NULL,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

先来分析一下这张表的行数据:无 null 值列表,无可变长字段列表,需要算上事务 ID 和指针字段,需要算上行记录头。

每行数据占用空间:4 + 4 + 4 + 6 + 7 + 5 = 30。

每个叶子节点存放:15232 ÷ 30 ≈ 507。

算上页目录槽位所占空间,每个叶子节点可存放 502 条。

在主键为 int 的情况下,最多总记录数:502 × 986049 ≈ 5 亿。

04 实际场景

上面的场景是两个极端, 我们看一个具体的示例。

CREATE TABLE `blog` (
  `id` bigint unsigned NOT NULL AUTO_INCREMENT COMMENT '博客id',
  `author_id` bigint unsigned NOT NULL COMMENT '作者id',
  `title` varchar(50) CHARACTER SET utf8mb4 NOT NULL COMMENT '标题',
  `description` varchar(250) CHARACTER SET utf8mb4 NOT NULL COMMENT '描述',
  `school_code` bigint unsigned DEFAULT NULL COMMENT '院校代码',
  `cover_image` char(32) DEFAULT NULL COMMENT '封面图',
  `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `release_time` datetime DEFAULT NULL COMMENT '首次发表时间',
  `modified_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间',
  `status` tinyint unsigned NOT NULL COMMENT '发表状态',
  `is_delete` tinyint unsigned NOT NULL DEFAULT 0,
  PRIMARY KEY (`id`),
  KEY `author_id` (`author_id`),
  KEY `school_code` (`school_code`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_general_mysql500_ci ROW_FORMAT=DYNAMIC;

分析一下这张表的行记录:

  • 行记录头信息:肯定得有,占用 5 字节
  • 可变长度字段列表:表中 title 占用 1 字节,description 占用 2 字节,共 3 字节
  • null 值列表:表中仅 school_code、cover_image、release_time 3 个字段可为 null,故仅占用 1 字节
  • 事务 ID 和指针字段:两个都得有,占用 13 字节

再看看字段内容信息:

  • id、author_id、school_code 均为 bigint 型,各占用 8 字节,共 24 字节
  • create_time、release_time、modified_time 均为 datetime 类型,各占 8 字节,共 24 字节
  • status、is_delete 为 tinyint 类型,各占用 1 字节,共 2 字节
  • cover_image 为char(32),字符编码为表默认值 utf8,占用 32 字节
  • title、description 分别为 varchar(50)、varchar(250),这两个应该都不会产生溢出页(不太确定),字符编码均为 utf8mb4,实际生产中 70% 以上都是存的中文( 3 字节),25% 为英文(1 字节),还有 5% 为 4 字节的表情,则存满的情况下将占用 (50+250)×(0.7×3+0.25×1+0.05×4) = 765 字节

统计上面的所有分析,共占用 869 字节,则每个叶子节点可以存放 15232 ÷ 869 ≈ 17 条,算上页目录,仍然能放 17 条。

主键为 bigint,最大总记录数:17× 619369=10,529,273 ≈ 1053 万。

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: