百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

PyTorch常用5个抽样函数(numpy抽样)

ztj100 2024-11-03 16:16 19 浏览 0 评论

PyTorch是一个开源的深度学习框架,它提供了一个用于高级特性的Python包。在本文中,我们将介绍PyTorch中的常见抽样函数。抽样是一个统计过程,它从总体中提取一个子集,通过子集来研究整个总体。

torch.bernoulli()

伯努利分布是一个离散分布,有两个结果,即成功和失败。如果成功的概率是p,那么失败的概率是(1-p),反之亦然。

PyTorch的实现和相应的输出如下:

a = torch.empty(3, 3).uniform_(0, 1)
print(a)

输出如下:

tensor([[0.0966, 0.7385, 0.6546],
[0.4255, 0.8294, 0.8315],
[0.8065, 0.8228, 0.6467]])

现在我们把bernoulli()函数应用到张量上

torch.bernoulli(a)

输出如下:

tensor([[0., 1., 1.],
[1., 1., 0.],
[1., 0., 1.]])

torch.Tensor.cauchy_()

柯西分布,又称柯西-洛伦兹分布,在统计学中,具有两个参数的连续分布函数,最早于19世纪初由法国数学家奥古斯丁-路易斯·柯西研究。后来,19世纪的荷兰物理学家亨德里克·洛伦兹(Hendrik Lorentz)用它来解释强迫共振或振动。第一眼看柯西分布看起来像正态分布,但它的“尾巴”并不像正态分布那样迅速逐渐消失。

柯西分布可能看起来类似于正态分布,它的峰值比高斯分布高,与正态分布不同的是,它的尾部衰减得更慢。

a = torch.ones(3, 3) 
a

输出:

tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

现在我们应用cauchy_()函数

torch.Tensor.cauchy_(a)

输出:

tensor([[-4.5374, 0.3726, 0.4947],
[ 0.4111, 0.9167, 0.7214],
[ 1.0533, -9.2247, 0.7620]])

注意,这里的函数名称以"_"结尾,这是pytorch的一个规定,他将会用改写参数,也就是我们传进去的变量a

torch.poisson ()

泊松分布用于计算一个事件在平均价值率(时间)的一定时间内发生的可能性。泊松分布是一个离散的概率分布。

a = torch.rand(4, 4) * 5 # rate parameter between 0 and 5
torch.poisson(a)

输出如下:

tensor([[2., 1., 0., 8.],
[2., 3., 3., 3.],
[0., 0., 1., 6.],
[0., 5., 3., 3.]])

torch.normal ()

正态分布,又称高斯分布,是独立随机变量的连续分布函数。该分布有一个钟形曲线,其特征有两个参数:均值,即图型上的最大值,图总是对称的;还有标准差,它决定了离均值的差值。

torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))

输出如下:

tensor([-0.6932, 2.3833, 2.3547, 3.8103, 5.4436, 5.8295, 7.5898, 8.4793,
9.1938, 10.0637])

torch.rand ()

PyTorch torch.randn()返回一个由可变参数大小(定义输出张量形状的整数序列)定义的张量,包含来自标准正态分布的随机数。

标准正态分布,也称为z分布,是一种特殊的正态分布,其均值为0,标准差为1

torch.randn(4,4)

输出如下:

tensor([[-1.3119, -0.2177, -0.2496, 0.2361],
[-1.2755, -0.2271, 1.5297, 0.6433],
[-0.4198, -0.9269, -0.6260, -0.9713],
[ 0.6730, -1.2400, 2.1338, 0.2051]])

作者:Debgandhar Ghosh

相关推荐

再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)

在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...

python编程:如何使用python代码绘制出哪些常见的机器学习图像?

专栏推荐...

python创建分类器小结(pytorch分类数据集创建)

简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...

matplotlib——绘制散点图(matplotlib散点图颜色和图例)

绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...

python实现实时绘制数据(python如何绘制)

方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...

简单学Python——matplotlib库3——绘制散点图

前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...

数据分析-相关性分析可视化(相关性分析数据处理)

前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...

免费Python机器学习课程一:线性回归算法

学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...

用Python进行机器学习(2)之逻辑回归

前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂

一、拟合和回归的区别拟合...

推荐2个十分好用的pandas数据探索分析神器

作者:俊欣来源:关于数据分析与可视化...

向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

用Python进行机器学习(11)-主成分分析PCA

我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...

神经网络基础深度解析:从感知机到反向传播

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

Python实现基于机器学习的RFM模型

CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...

取消回复欢迎 发表评论: